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Where and What is it good for?

Why do we need Code Generation Tools?

I Writing a good compiler for a modern programming
language is not easy...
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Where and What is it good for?

Tame Complexity through Automation!

I ...so we like to let tools figure out how to do the boringly
mechanical parts, and only fill in the relevant bits and
pieces.
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Where and What is it good for?
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Code Generation Example

What do we actually want to do?

I Given an IR in the form of an AST:

I We want the following:
I obviously we want to generate Machine Code
I but the generated code should be optimal!
I concentrate on the essential part of the problem, namely the

task of generating code for AST trees and subtrees.

I We do not want:
I to clutter our code with boring tree traversals
I to worry about coding the details of optimal instruction

selection
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Code Generation Example

I Lets say we have an AST for the following operation and
want to emit code for it:

:=

+ -

*

++

REF

VAL
ARP

NUM
4

VAL
ARP

NUM
8

NUM
2

LAB
@G

NUM
12

REF REF

w := x - 2 * y

ARP - Activation Record Pointer

@G - ASM Label
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Code Generation Example

I If we were to code this manually, we would probably do
something like the following:

:=

+ -

*

++

REF

VAL
ARP

NUM
4

VAL
ARP

NUM
8

NUM
2

LAB
@G

NUM
12

REF REF

Tile 1

Tile 2 Tile 3

Tile 4

Tile 5

Tile 6

I Each tile corresponds to a
sequence of operations

I If those operations are emitted in
the appropriate order they
implement the tree
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Code Generation Example

So what’s hard about this?

I Well, the hard part is to find the optimal set of tiles to tile
the tree.

I In order to see why that is a problem we will connect tiles
to AST subtrees by:

I providing a set of rewrite rules

I associate code templates with rewrite rules

Igor Boehm Johannes Kepler University Linz, Austria
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Code Generation Example

Rewrite Rules with Code Templates for Abstract Syntax Tree

Rewrite Rule Code Template
1 Goal→ Assign
2 Assign→ ← (Reg1, Reg2) store r2 → r1

3 Reg → LAB1 loadI l1 → rnew

4 Reg → V AL1

5 Reg → NUM1 load n1 → rnew

6 Reg → REF (Reg1) load r1 → rnew

7 Reg → REF (+(Reg1, Reg2)) loadAO r1, r2 → rnew

8 Reg → REF (+(Reg1, NUM2)) loadAI r1, n2 → rnew

9 Reg → REF (+(LAB1, Reg2)) loadAI r2, l1 → rnew

10 Reg → +(Reg1, Reg2)) add r1, r2 → rnew

11 Reg → +(Reg1, NUM2)) addI r1, n2 → rnew

12 Reg → +(LAB1, Reg2)) addI r2, l1 → rnew

Table: Modified example from [Cooper & Torczon p.561]
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Code Generation Example

I Given the previous rewrite rules for our AST, lets consider
Tile 3 from our example and try to tile it:

+

LAB
@G

NUM
12

REF

+

LAB
@G

NUM
12

REF

+

Reg NUM
12

REF

3

8

Reg

Initial AST Matches 3 Matches 8 Reduced
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Code Generation Example

I But there is a plethora of rewrite sequences (or tilings) for
this trivial subtree!!!

+

REF

3

7

<3,5,7>

LAB
@G

NUM
12

5

+

REF

3

6

<3,5,10,6>

LAB
@G

NUM
12

5

10
+

REF6

<5,12,6>

LAB
@G

NUM
12

5

12+

REF

3

6

<3,11,6>

LAB
@G

NUM
12

11
+

REF

3

6

<5,3,10,6>

LAB
@G

NUM
12

5

10

+

REF

3

7

<5,3,7>

LAB
@G

NUM
12

5
+

REF

3

8

<3,8>

LAB
@G

NUM
12

+

REF9

<5,9>

LAB
@G

NUM
12

5
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Code Generation Example

I How do we select the optimal sequence of rewrite rules?

I We need some metric which enables us to compare various
selections of rewrite rules with each other.

I Solution: Annotate rewrite rules with costs!

I We need some clever algorithm to sort out the optimal
rewrite sequence.

I Solution: Dynamic Programming will do the trick!
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Dynamic Programming

I Dynamic Programming is a method of solving problems
exhibiting the following properties:

I the approach for a given problem assumes a recursive
solution, with a bottom-up evaluation of the solution.

I sub-solutions can be recorded (e.g. in a table) for reuse.
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Dynamic Programming

I One optimal solution for our previous tiling problem looks
as follows:

+

REF

3

8

LAB
@G

NUM
12

+

REF

LAB
@G

NUM
12

Rule
Cost

3

1

Goal Assign Reg
Rule
Cost

5

1

Goal Assign Reg

Rule
Cost

11

2

Goal Assign Reg

Rule
Cost

8

2

Goal Assign Reg

Recursively work
bottom up reusing
recorded results
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Dynamic Programming

So we are almost there!

I We know how to optimally tile an AST using Dynamic
Programming.

I We know how to specify rewrite rules (also called tree
patterns or productions).

I We know how to specify code templates (semantic actions)
for AST patterns.
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Tree Pattern Matching using Dynamic Programming

I Tree Pattern Matching using Dynamic Programming works
as follows:

I Two passes over the AST:

I Pass 1: Finds the optimal tiling of an AST using Dynamic
Programming.

I Pass 2: Emits semantic actions (code templates) for tiled
AST.
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Tree Pattern Matching using Dynamic Programming

I Let’s look at where our code generator is used in the
compiler design process:
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Language Specification

Tree Pattern Matching Language
I General Structure of a Grammar Specification:

import, include statements

global variable definitions
methods and functions

semantic action

cost

rewrite rules

tree pattern
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Language Specification

I We have the following Node definition together with an
example Abstract Syntax Tree:

+

CONST
1

CONST
12

-+

CONST
4

CONST
2

CONST
2

*

Example AST

Node Datastructure

Node Kinds
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Language Specification

Example 1
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Language Specification

I While the previous example looks nice at first sight, it is still
quite cumbersome:

I Problem 1: The way in which result registers are returned
is by abusing the node class!

I Problem 2: The list holding instructions is global!

I We can do much better than this!!!
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Language Specification

I We can use the Attribute Grammar formalism to correct
our previous ’flaws’:

I Solution to Problem 1: The register production produces
a register as its output and takes a list of instructions as its
input to append its instructions to.

I Solution to Problem 2: The instruction list is passed as a
parameter and thus must not be declared as a ’global’ class
variable.

I Let’s look at an example for clarification...
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Language Specification

Example 2
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Language Specification

I The simple example used up until now doesn’t really
convey the full power of the Tree Pattern Matching
Language, namely:

I Arbitrary nesting of patterns.

I The ability to sprinkle semantic actions almost anywhere.

I ...those features will be revealed during my last
presentation where I will demonstrate a complete working
example.
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Current Status

I What has been done up until now?

I An extensive prototyping phase helped to identify the core
features of the tree pattern matching language by trying to
solve real world problems with it.

I Before any implementation started a semantics for the
language has been specified in terms of a denotational
semantics and semantic algebras.

I A fully functional Lexer and Parser has already been
implemented.
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Current Status

I What must still be done?

I Implement good context sensitive analysis to ease
development of Tree Pattern Matching grammar
specifications.

I Finally, emit code for the given specifications!
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Current Status

Thank you for your
attention!
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