
Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Automated Code Generation using Dynamic
Programming Techniques

Igor Boehm

Supervisor: Prof. Dr. Dr. h.c. Hanspeter Mössenböck

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Outline

Motivation
Where and What is it good for?

Theoretical Preliminaries
Code Generation Example
Dynamic Programming
Tree Pattern Matching using Dynamic Programming

Tree Pattern Matching Language
Language Specification

Finis
Current Status

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Where and What is it good for?

Why do we need Code Generation Tools?

I Writing a good compiler for a modern programming
language is not easy...

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Where and What is it good for?

Tame Complexity through Automation!

I ...so we like to let tools figure out how to do the boringly
mechanical parts, and only fill in the relevant bits and
pieces.

Optimizer

Analysis

IR IR
...

Sc
an Op
t 

1

Op
t 

2

Op
t 

n

Se
le

ct

Sc
he

du
le

Al
lo

ca
te

Support for Automation
(Coco,Yacc,Lex,etc.)

Hand Craft

Front End

Infrastructure
Symbol Tables, Trees, Graphs, Sets, Grammars, ...

CS
A

Pa
rs

e

We now automate
Instruction Selection

as well!

Back End

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Where and What is it good for?

Front End Back EndOptimizer

Analysis

Infrastructure
Symbol Tables, Trees, Graphs, Sets, Grammars, ...

IR IR
...

Sc
an

Pa
rs

e

CS
A Op
t 

1

Op
t 

2

Op
t 

n

Se
le

ct

Sc
he

du
le

Al
lo

ca
te

Mapping between IR
&

 Machine Description

Backend
Generator

Tree Pattern 
Matching Engine

x

13

- 5

+
:=

Semantic Actions
Note similarities and differences 

to Parser Generators!

AST Patterns matches

emits

Tree Pattern Matching 
is the key!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

What do we actually want to do?

I Given an IR in the form of an AST:

I We want the following:
I obviously we want to generate Machine Code
I but the generated code should be optimal!
I concentrate on the essential part of the problem, namely the

task of generating code for AST trees and subtrees.

I We do not want:
I to clutter our code with boring tree traversals
I to worry about coding the details of optimal instruction

selection

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

What do we actually want to do?

I Given an IR in the form of an AST:

I We want the following:
I obviously we want to generate Machine Code
I but the generated code should be optimal!
I concentrate on the essential part of the problem, namely the

task of generating code for AST trees and subtrees.

I We do not want:
I to clutter our code with boring tree traversals
I to worry about coding the details of optimal instruction

selection

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

What do we actually want to do?

I Given an IR in the form of an AST:

I We want the following:
I obviously we want to generate Machine Code
I but the generated code should be optimal!
I concentrate on the essential part of the problem, namely the

task of generating code for AST trees and subtrees.

I We do not want:
I to clutter our code with boring tree traversals
I to worry about coding the details of optimal instruction

selection

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

What do we actually want to do?

I Given an IR in the form of an AST:

I We want the following:
I obviously we want to generate Machine Code
I but the generated code should be optimal!
I concentrate on the essential part of the problem, namely the

task of generating code for AST trees and subtrees.

I We do not want:
I to clutter our code with boring tree traversals
I to worry about coding the details of optimal instruction

selection

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

What do we actually want to do?

I Given an IR in the form of an AST:

I We want the following:
I obviously we want to generate Machine Code
I but the generated code should be optimal!
I concentrate on the essential part of the problem, namely the

task of generating code for AST trees and subtrees.

I We do not want:
I to clutter our code with boring tree traversals
I to worry about coding the details of optimal instruction

selection

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

What do we actually want to do?

I Given an IR in the form of an AST:

I We want the following:
I obviously we want to generate Machine Code
I but the generated code should be optimal!
I concentrate on the essential part of the problem, namely the

task of generating code for AST trees and subtrees.

I We do not want:
I to clutter our code with boring tree traversals
I to worry about coding the details of optimal instruction

selection

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

What do we actually want to do?

I Given an IR in the form of an AST:

I We want the following:
I obviously we want to generate Machine Code
I but the generated code should be optimal!
I concentrate on the essential part of the problem, namely the

task of generating code for AST trees and subtrees.

I We do not want:
I to clutter our code with boring tree traversals
I to worry about coding the details of optimal instruction

selection

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

What do we actually want to do?

I Given an IR in the form of an AST:

I We want the following:
I obviously we want to generate Machine Code
I but the generated code should be optimal!
I concentrate on the essential part of the problem, namely the

task of generating code for AST trees and subtrees.

I We do not want:
I to clutter our code with boring tree traversals
I to worry about coding the details of optimal instruction

selection

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

I Lets say we have an AST for the following operation and
want to emit code for it:

:=

+ -

*

++

REF

VAL
ARP

NUM
4

VAL
ARP

NUM
8

NUM
2

LAB
@G

NUM
12

REF REF

w := x - 2 * y

ARP - Activation Record Pointer

@G - ASM Label

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

I If we were to code this manually, we would probably do
something like the following:

:=

+ -

*

++

REF

VAL
ARP

NUM
4

VAL
ARP

NUM
8

NUM
2

LAB
@G

NUM
12

REF REF

Tile 1

Tile 2 Tile 3

Tile 4

Tile 5

Tile 6

I Each tile corresponds to a
sequence of operations

I If those operations are emitted in
the appropriate order they
implement the tree

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

So what’s hard about this?

I Well, the hard part is to find the optimal set of tiles to tile
the tree.

I In order to see why that is a problem we will connect tiles
to AST subtrees by:

I providing a set of rewrite rules

I associate code templates with rewrite rules

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

Rewrite Rules with Code Templates for Abstract Syntax Tree

Rewrite Rule Code Template
1 Goal→ Assign
2 Assign→ ← (Reg1, Reg2) store r2 → r1

3 Reg → LAB1 loadI l1 → rnew

4 Reg → V AL1

5 Reg → NUM1 load n1 → rnew

6 Reg → REF (Reg1) load r1 → rnew

7 Reg → REF (+(Reg1, Reg2)) loadAO r1, r2 → rnew

8 Reg → REF (+(Reg1, NUM2)) loadAI r1, n2 → rnew

9 Reg → REF (+(LAB1, Reg2)) loadAI r2, l1 → rnew

10 Reg → +(Reg1, Reg2)) add r1, r2 → rnew

11 Reg → +(Reg1, NUM2)) addI r1, n2 → rnew

12 Reg → +(LAB1, Reg2)) addI r2, l1 → rnew

Table: Modified example from [Cooper & Torczon p.561]

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

I Given the previous rewrite rules for our AST, lets consider
Tile 3 from our example and try to tile it:

+

LAB
@G

NUM
12

REF

+

LAB
@G

NUM
12

REF

+

Reg NUM
12

REF

3

8

Reg

Initial AST Matches 3 Matches 8 Reduced

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

I But there is a plethora of rewrite sequences (or tilings) for
this trivial subtree!!!

+

REF

3

7

<3,5,7>

LAB
@G

NUM
12

5

+

REF

3

6

<3,5,10,6>

LAB
@G

NUM
12

5

10
+

REF6

<5,12,6>

LAB
@G

NUM
12

5

12+

REF

3

6

<3,11,6>

LAB
@G

NUM
12

11
+

REF

3

6

<5,3,10,6>

LAB
@G

NUM
12

5

10

+

REF

3

7

<5,3,7>

LAB
@G

NUM
12

5
+

REF

3

8

<3,8>

LAB
@G

NUM
12

+

REF9

<5,9>

LAB
@G

NUM
12

5

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

I How do we select the optimal sequence of rewrite rules?

I We need some metric which enables us to compare various
selections of rewrite rules with each other.

I Solution: Annotate rewrite rules with costs!

I We need some clever algorithm to sort out the optimal
rewrite sequence.

I Solution: Dynamic Programming will do the trick!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

I How do we select the optimal sequence of rewrite rules?

I We need some metric which enables us to compare various
selections of rewrite rules with each other.

I Solution: Annotate rewrite rules with costs!

I We need some clever algorithm to sort out the optimal
rewrite sequence.

I Solution: Dynamic Programming will do the trick!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

I How do we select the optimal sequence of rewrite rules?

I We need some metric which enables us to compare various
selections of rewrite rules with each other.

I Solution: Annotate rewrite rules with costs!

I We need some clever algorithm to sort out the optimal
rewrite sequence.

I Solution: Dynamic Programming will do the trick!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

I How do we select the optimal sequence of rewrite rules?

I We need some metric which enables us to compare various
selections of rewrite rules with each other.

I Solution: Annotate rewrite rules with costs!

I We need some clever algorithm to sort out the optimal
rewrite sequence.

I Solution: Dynamic Programming will do the trick!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Code Generation Example

I How do we select the optimal sequence of rewrite rules?

I We need some metric which enables us to compare various
selections of rewrite rules with each other.

I Solution: Annotate rewrite rules with costs!

I We need some clever algorithm to sort out the optimal
rewrite sequence.

I Solution: Dynamic Programming will do the trick!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Dynamic Programming

I Dynamic Programming is a method of solving problems
exhibiting the following properties:

I the approach for a given problem assumes a recursive
solution, with a bottom-up evaluation of the solution.

I sub-solutions can be recorded (e.g. in a table) for reuse.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Dynamic Programming

I Dynamic Programming is a method of solving problems
exhibiting the following properties:

I the approach for a given problem assumes a recursive
solution, with a bottom-up evaluation of the solution.

I sub-solutions can be recorded (e.g. in a table) for reuse.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Dynamic Programming

I Dynamic Programming is a method of solving problems
exhibiting the following properties:

I the approach for a given problem assumes a recursive
solution, with a bottom-up evaluation of the solution.

I sub-solutions can be recorded (e.g. in a table) for reuse.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Dynamic Programming

I One optimal solution for our previous tiling problem looks
as follows:

+

REF

3

8

LAB
@G

NUM
12

+

REF

LAB
@G

NUM
12

Rule
Cost

3

1

Goal Assign Reg
Rule
Cost

5

1

Goal Assign Reg

Rule
Cost

11

2

Goal Assign Reg

Rule
Cost

8

2

Goal Assign Reg

Recursively work
bottom up reusing
recorded results

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Dynamic Programming

So we are almost there!

I We know how to optimally tile an AST using Dynamic
Programming.

I We know how to specify rewrite rules (also called tree
patterns or productions).

I We know how to specify code templates (semantic actions)
for AST patterns.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Dynamic Programming

So we are almost there!

I We know how to optimally tile an AST using Dynamic
Programming.

I We know how to specify rewrite rules (also called tree
patterns or productions).

I We know how to specify code templates (semantic actions)
for AST patterns.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Dynamic Programming

So we are almost there!

I We know how to optimally tile an AST using Dynamic
Programming.

I We know how to specify rewrite rules (also called tree
patterns or productions).

I We know how to specify code templates (semantic actions)
for AST patterns.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Tree Pattern Matching using Dynamic Programming

I Tree Pattern Matching using Dynamic Programming works
as follows:

I Two passes over the AST:

I Pass 1: Finds the optimal tiling of an AST using Dynamic
Programming.

I Pass 2: Emits semantic actions (code templates) for tiled
AST.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Tree Pattern Matching using Dynamic Programming

I Tree Pattern Matching using Dynamic Programming works
as follows:

I Two passes over the AST:

I Pass 1: Finds the optimal tiling of an AST using Dynamic
Programming.

I Pass 2: Emits semantic actions (code templates) for tiled
AST.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Tree Pattern Matching using Dynamic Programming

I Tree Pattern Matching using Dynamic Programming works
as follows:

I Two passes over the AST:

I Pass 1: Finds the optimal tiling of an AST using Dynamic
Programming.

I Pass 2: Emits semantic actions (code templates) for tiled
AST.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Tree Pattern Matching using Dynamic Programming

I Tree Pattern Matching using Dynamic Programming works
as follows:

I Two passes over the AST:

I Pass 1: Finds the optimal tiling of an AST using Dynamic
Programming.

I Pass 2: Emits semantic actions (code templates) for tiled
AST.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Tree Pattern Matching using Dynamic Programming

I Let’s look at where our code generator is used in the
compiler design process:

Optimizer

Analysis

IR IR
...

Sc
an Op
t 

1

Op
t 

2

Op
t 

n

Sc
he

du
le

Al
lo

ca
te

Front End

CS
A

Pa
rs

e
Back End

Code
Generator

Tree Pattern
grammar spec.
for our AST

...takes spec.
and produces...

Java,C#,...,
code which can 
be plugged into 
our Compiler

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

Tree Pattern Matching Language
I General Structure of a Grammar Specification:

import, include statements

global variable definitions
methods and functions

semantic action

cost

rewrite rules

tree pattern

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I We have the following Node definition together with an
example Abstract Syntax Tree:

+

CONST
1

CONST
12

-+

CONST
4

CONST
2

CONST
2

*

Example AST

Node Datastructure

Node Kinds

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

Example 1

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I While the previous example looks nice at first sight, it is still
quite cumbersome:

I Problem 1: The way in which result registers are returned
is by abusing the node class!

I Problem 2: The list holding instructions is global!

I We can do much better than this!!!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I While the previous example looks nice at first sight, it is still
quite cumbersome:

I Problem 1: The way in which result registers are returned
is by abusing the node class!

I Problem 2: The list holding instructions is global!

I We can do much better than this!!!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I While the previous example looks nice at first sight, it is still
quite cumbersome:

I Problem 1: The way in which result registers are returned
is by abusing the node class!

I Problem 2: The list holding instructions is global!

I We can do much better than this!!!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I While the previous example looks nice at first sight, it is still
quite cumbersome:

I Problem 1: The way in which result registers are returned
is by abusing the node class!

I Problem 2: The list holding instructions is global!

I We can do much better than this!!!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I We can use the Attribute Grammar formalism to correct
our previous ’flaws’:

I Solution to Problem 1: The register production produces
a register as its output and takes a list of instructions as its
input to append its instructions to.

I Solution to Problem 2: The instruction list is passed as a
parameter and thus must not be declared as a ’global’ class
variable.

I Let’s look at an example for clarification...

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I We can use the Attribute Grammar formalism to correct
our previous ’flaws’:

I Solution to Problem 1: The register production produces
a register as its output and takes a list of instructions as its
input to append its instructions to.

I Solution to Problem 2: The instruction list is passed as a
parameter and thus must not be declared as a ’global’ class
variable.

I Let’s look at an example for clarification...

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I We can use the Attribute Grammar formalism to correct
our previous ’flaws’:

I Solution to Problem 1: The register production produces
a register as its output and takes a list of instructions as its
input to append its instructions to.

I Solution to Problem 2: The instruction list is passed as a
parameter and thus must not be declared as a ’global’ class
variable.

I Let’s look at an example for clarification...

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I We can use the Attribute Grammar formalism to correct
our previous ’flaws’:

I Solution to Problem 1: The register production produces
a register as its output and takes a list of instructions as its
input to append its instructions to.

I Solution to Problem 2: The instruction list is passed as a
parameter and thus must not be declared as a ’global’ class
variable.

I Let’s look at an example for clarification...

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

Example 2

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I The simple example used up until now doesn’t really
convey the full power of the Tree Pattern Matching
Language, namely:

I Arbitrary nesting of patterns.

I The ability to sprinkle semantic actions almost anywhere.

I ...those features will be revealed during my last
presentation where I will demonstrate a complete working
example.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I The simple example used up until now doesn’t really
convey the full power of the Tree Pattern Matching
Language, namely:

I Arbitrary nesting of patterns.

I The ability to sprinkle semantic actions almost anywhere.

I ...those features will be revealed during my last
presentation where I will demonstrate a complete working
example.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I The simple example used up until now doesn’t really
convey the full power of the Tree Pattern Matching
Language, namely:

I Arbitrary nesting of patterns.

I The ability to sprinkle semantic actions almost anywhere.

I ...those features will be revealed during my last
presentation where I will demonstrate a complete working
example.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Language Specification

I The simple example used up until now doesn’t really
convey the full power of the Tree Pattern Matching
Language, namely:

I Arbitrary nesting of patterns.

I The ability to sprinkle semantic actions almost anywhere.

I ...those features will be revealed during my last
presentation where I will demonstrate a complete working
example.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Current Status

I What has been done up until now?

I An extensive prototyping phase helped to identify the core
features of the tree pattern matching language by trying to
solve real world problems with it.

I Before any implementation started a semantics for the
language has been specified in terms of a denotational
semantics and semantic algebras.

I A fully functional Lexer and Parser has already been
implemented.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Current Status

I What has been done up until now?

I An extensive prototyping phase helped to identify the core
features of the tree pattern matching language by trying to
solve real world problems with it.

I Before any implementation started a semantics for the
language has been specified in terms of a denotational
semantics and semantic algebras.

I A fully functional Lexer and Parser has already been
implemented.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Current Status

I What has been done up until now?

I An extensive prototyping phase helped to identify the core
features of the tree pattern matching language by trying to
solve real world problems with it.

I Before any implementation started a semantics for the
language has been specified in terms of a denotational
semantics and semantic algebras.

I A fully functional Lexer and Parser has already been
implemented.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Current Status

I What has been done up until now?

I An extensive prototyping phase helped to identify the core
features of the tree pattern matching language by trying to
solve real world problems with it.

I Before any implementation started a semantics for the
language has been specified in terms of a denotational
semantics and semantic algebras.

I A fully functional Lexer and Parser has already been
implemented.

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Current Status

I What must still be done?

I Implement good context sensitive analysis to ease
development of Tree Pattern Matching grammar
specifications.

I Finally, emit code for the given specifications!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Current Status

I What must still be done?

I Implement good context sensitive analysis to ease
development of Tree Pattern Matching grammar
specifications.

I Finally, emit code for the given specifications!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Current Status

I What must still be done?

I Implement good context sensitive analysis to ease
development of Tree Pattern Matching grammar
specifications.

I Finally, emit code for the given specifications!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques



Motivation Theoretical Preliminaries Tree Pattern Matching Language Finis

Current Status

Thank you for your
attention!

Igor Boehm Johannes Kepler University Linz, Austria

Automated Code Generation using Dynamic Programming Techniques


	Motivation
	Where and What is it good for?

	Theoretical Preliminaries
	Code Generation Example
	Dynamic Programming
	Tree Pattern Matching using Dynamic Programming

	Tree Pattern Matching Language
	Language Specification

	Finis
	Current Status


