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Abstract

This paper is divided into two parts, both related to interesting develop-
ments in the area of computer storage. The first part deals with RAID and
introduces the RAIDframe framework, a rapid tool for prototyping RAID
architectures. In the second part, two distributed storage concepts, namely
Storage Area Networks (SAN) and Networkd Attached Storage (NAS), are
introduced and compared to Direct Attached Storage.

Over the past decade several trends in computer history have driven the
design of storage subsystems towards increasing parallelism. An innovation
that improves both dependability and performance of storage systems is
disk arrays [6]. Since disk arrays consist of many disk drives and, hence,
many disk arms, rather than one large drive with one disk arm, potential
throughput can be increased, thus improving performance.

After having covered the basics, the need for a framework, namely RAID-
frame, which enables rapid RAID prototyping will be elaborated. Many key
ideas and concepts implemented in RAIDframe will be explained, in order
to justify the power and flexibility of RAIDframe. Finally a section describ-
ing the most important steps which are necessary to extend the RAIDframe
framework with a new architecture, shows the extensibility of the RAID-
frame framework.

While storage prices keep on dropping the cost of data remains invalu-
able. High speed computer networks make it possible to aggregate servers
into central organistation wide serverfarms. Keeping reliable storage on a
per server basis can soon become a maintenance and cost problem.

Distributed storage helps organisations to aggregate reliable storage into
central managed places, thus reducing the amount of per server maintenance
overhead. Currently there exist two approaches for doing distributed stor-
age. Storage Area Networks and Network Attached Storage. This paper
introduces the main concepts behind them, and compares distributed to
local storage. Two concrete distributed storage protocols are presented to
help the reader in getting a better overview.
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Chapter 1

Introduction

1.1 Structure of this Paper

The first part of this paper introduces the RAIDframe framework. In order
to fully understand all the RAID specific topics covered by this paper, it is
necessary to start with the basics of RAID1 systems. Thus an overview of
RAID categeries, combined with the analysis of advantages and disadvan-
tages of certain RAID levels, is given first.

After having covered the basics, the need for a framework, namely RAID-
frame, which enables rapid RAID prototyping will be elaborated. Many key
ideas and concepts implemented in RAIDframe will be explained, in order
to justify the power and flexibility of RAIDframe. Finally a section describ-
ing the most important steps which are necessary to extend the RAIDframe
framework with a new architecture, shows the extendability of the RAID-
frame framework.

In the second part of the paper we discuss distributed storage. We will
first introduce the major flavors of distributed storage technology, namely
Storage Area Networks (SAN) and Network Attached Storage (NAS) and
compare them to Direct Attached Storage (DAS). After that we will discuss
distributed storage over TCP/IP networks. Here we do a comparison of
the technologies - iSCSI as an exponent of SAN technology and the NFS
protocol suite as an exponent of NAS. We conclude by showing differences
and performance impacts of the two approaches.

1RAID - Redundant Arrays of Inexpensive Disks
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1.2 Motivation

Over the past decade several trends in computer history have driven the
design of storage subsystems towards increasing parallelism. An innovation
that improves both dependability and performance of storage systems is
disk arrays [6]. Since disk arrays consist of many disk drives and, hence,
many disk arms, rather than one large drive with one disk arm, potential
throughput can be increased, thus improving performance.

Although a disk array would have more faults than a smaller number of
larger disks when each disk has the same reliability, dependability can be
improved by adding redundant disks to the array to tolerate faults. This
implies that if a single disk fails, the lost information can be reconstructed
from redundant information

There are several approaches for maintaining redundant data, and in 1987
these different approaches were categorized into a taxonomy known as RAID
by a research group at U.C. Berkeley headed by David A. Patterson.

While storage prices keep on dropping the cost of data remains invaluable.
High speed computer networks make it possible to aggreate servers into
central, organistation wide serverfarms. Keeping reliable storage on a per
server basis can soon become a maintenance and cost problem.

Distributed storage helps organisations to aggregate reliable storage into
central managed places thus reducing the amount of per server maintenance
overhead. Currently there exist two approaches for doing distributed stor-
age. Storage Area Networks and Network Attached Storage. This paper
introduces the main concepts behind them and compares distributed to lo-
cal storage. Two concrete distributed storage protocols are presented to
help the reader in getting a better overview.
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Chapter 2

RAID Levels

There is a numerical classification of RAID which divides RAID systems into
different levels based on their fault tolerance, and the overhead in redundant
disks.

2.1 RAID 0 - No Redundancy

This RAID level refers to a nonredundant disk array, indicating the data are
striped across several disks but without redundancy to tolerate disk failure
(see figure 2.1). By striping across a set of disks, storage management can
be simplified since a collection of disks appears as a single large disk to an
application.

Figure 2.1: RAID 0 - No redundancy.

Another advantage of striping across a set of disks is an improvement in
performance for large disk accesses, since many disks can operate at once.
Thus non-redundant disk arrays are widely used in super-computing envi-
ronments where performance and capacity, rather than reliability, are the
primary concerns.
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2.2 RAID 1 - Mirroring

RAID 1 is the traditional scheme for tolerating disk failure, also called mir-
roring or shadowing (see figure 2.2).

Figure 2.2: RAID 1 - Mirroring.

This approach uses twice as many disks as RAID 0 because whenever data
are written to one disk, those data are also written to a redundant disk, thus
there are always two copies of the information leading to increased reliability
by a factor of two. Since reliability is the linear multiple of the number of
member disks, it can easily be increased by creating more than two copies
of data.

RAID level 1 defines the user data to be block-striped across the mirror
pairs. Traditional mirrored systems rather fill each disk with consecutive
user data before switching to the next disk, which can be thought of as
setting the stripe unit to the size of one disk.

2.3 RAID 3 - Bit-Interleaved Parity

Having a complete copy of the original data for each disk is a very expensive
solution. The cost of higher availability can be decreased by only adding
enough redundant information, referred to as parity, to restore the lost in-
formation on a failure.

In a RAID level 3 setup, data is conceptually interleaved bit-wise over the
data disks, with an additional parity disk tolerating a single disk failure (see
figure 2.3). With this setup each read request needs to access all data disks
and each write request needs to access all data disks and the parity disk.
Thus it is only possible to serve one read or write request at a time.

If an error occurs during a read operation, the corresponding disk controller
reports a read data error so the RAID system knows which disk has failed,
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Figure 2.3: RAID 3 - Bit-Interleaved Parity.

and thus is able to reconstruct the missing data by XORing all of the remain-
ing data disks plus the parity disk. If we assume that disk 3 in the RAID
level 3 diagram in figure 2.3 has failed, the reconstructions would work like
the follwing example, where B denotes Bit, and P denotes Parity :

(P1−32 = B1 ⊕B2 ⊕B3 ⊕ · · · ⊕B32) → (B3 = B1 ⊕B2 ⊕ P1−32 ⊕ · · · ⊕B32)

2.4 RAID 4 and 5 - Block-Interleaved Parity and
Distributed Block-Interleaved Parity

A disadvantage of RAID 3 is that every disk access goes to all disks, but
many of todays applications would prefer to issue smaller disk accesses which
should occur in parallel if they are independent. That is the purpose of RAID
levels 4 and 5.

Figure 2.4: RAID 4 - Block-interleaved Parity.

Both, RAID 4 and 5, use the same ratio of data and check disks as RAID 3,
but they access data differently [6]. The main advantage of block-interleaved
parity disk arrays is that the parity is stored as blocks and associated with
a set of data blocks (see figure 2.4). The size of these blocks is called the
striping unit. Read requests smaller than the striping unit access only a
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single data disk. Write requests must update the corresponding data blocks
and recalculate and update the parity blocks.

Because in a RAID 4 setup there is only one parity disk which must be
updated on every write operation, the parity disk will soon become a bot-
tleneck for write intensive applications. RAID level 5 eliminates the parity
disk bottleneck by distributing the parity blocks uniformly over all disks
(see figure 2.5).

Figure 2.5: RAID 5 - Distributed Block-interleaved Parity.

The organization of RAID 5 clearly shows that the parity associated with
each row of data blocks is no longer restricted to a single disk. This allows
multiple writes to occur simultaneously as long as the data and parity blocks
are not located in the same disks.

In RAID Level 5, there are a variety of ways to lay out data and parity such
that parity is evenly distributed over the disks [14]. The structure shown
in Figure 2.5 is called the left-symmetric organization and is formed by first
placing the parity units along the diagonal and then placing the consecutive
user data units on consecutive disks at the lowest available offset on each
disk. This method for assigning data units to disks assures that, if there are
any accesses in the workload large enough to span many stripe units, the
maximum possible number of disks will be used to service them [8].

2.5 RAID 6 - P+Q Redundancy

The parity based RAID levels 1 through 5 only protect against a single disk
failure. For some mission critical applications this may not be sufficient,
thus parity can be generalized to have a second calculation over the data
blocks combined with a second parity block. This second parity block would
allow for recovery in case of a second disk failure.

P+Q Redundancy usually uses block-level striping across a set of drives,
just like in RAID 5, and a second set of parity is calculated and written
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across all the drives (see figure 2.6).

Figure 2.6: RAID 6 - P+Q Redundancy.

2.6 Nested RAID Levels

Until now we have assumed that each RAID solution consists of a set of
physical hard disks as its basic elements. We want to extend this assumption
to the point where, one RAID level can use another RAID level as its basic
element. Such a nested RAID array resembles a tree like structure were all
nodes represent a RAID level, and the leafs represent the physical disks at
the bottom (see figure 2.7).

Figure 2.7: RAID 01 - RAID 1 consisting of RAID 0 arrays.

Nested RAID arrays are usually denoted by joining the numbers indicating
the RAID levels into a single number. An example for this taxonomy would
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be the combination of multiple RAID 0 arrays stored on physical disks, with
a RAID 1 on top, referred to as RAID 01 (mirror of stripes).

One reason to nest RAID levels is to increase performance and redundancy
due to a combination of a RAID type which provides redundancy (e.g. RAID
1), with a RAID type that boosts performance (e.g. RAID 0).
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Chapter 3

RAIDFrame

3.1 General Concepts

In the previous chapter we discussed the structure and operation of disk
arrays, explaining the different data layouts and fault tolerance for each of
the original RAID levels. It should have become quite obvious how complex
array software used to control the disks can get. Unfortunately, using the
traditional manual firmware-design approach employed by storage system
designers, implementing control software for these redundant disk array ar-
chitectures has led to long product-development times and uncertain product
reliability [13].

Since almost no code is shared between RAID implementations which follow
the traditional development approach, the software becomes overly complex.
It is a very hard and tedious task to test such complex software, thus pro-
viding a framework for efficient and rapid development of array software for
a particular situation which performs optimally, is the main goal of RAID-
frame.

To do this, the RAIDframe project has aimed to increase the amount of code
reused between RAID designs. Thus things like generalized error-recovery
mechanisms and means for verifying the correctness of a design before it is
even implemented, become possible.

3.1.1 Identifying a Common Set of Primitive RAID Opera-
tions

Despite the complexity of various RAID levels, a typical raid controller
usually maps all RAID operations to a relatively small set of corresponding
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disk operations, refered to as primitive operations. In general, such primitive
operations consist of routines for disk access, redundancy calculation and
resource allocation.

Such operations can be viewed as instructions of a RAID architecture, with
various constraints imposed upon the sequence of execution of such instruc-
tions. We can use these instructions to construct RAID operations. Just
as computer architects use the instructions of a certain instruction set ar-
chitecture to implement various programs, it is possible to use our RAID
instructions set to create RAID operations which can be treated as pro-
grams.

By only using RAID instructions which are present in the RAID instruction
set, much more code can be shared across various RAID level implemen-
tations. When designing an efficient RAID instructions, it is important to
create modular instructions, which only change orthogonally if the architec-
ture changes.

The following incomplete listing of common primitive RAID operations will
suffice to explain the key ideas of the RAIDframe architecture:

• Rd: copy data from disk to buffer

• Wd: copy data from buffer to disk

• MemA: acquire a buffer

• MemD: release a buffer

• XOR: xor contents of buffers

• ...

3.1.2 Building RAID Operations Based on a Set of Primitive
Operations

It has already been mentioned that there are several constraints imposed
upon the sequence of execution of RAID instructions. The order in which
such primitive operations are executed is solely a function of the data and
control dependencies which exist between them [8]. Similar to a dynami-
cally scheduled processor, which reorders the execution of instructions as
long als there are no dependencies between them, in order to exploit in-
struction level parallelism, a RAID array designer must know the necessary
dependencies which exist between primitive RAID operations in order to
efficiently implement them.
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3.2 Using Graphs for RAID Access Sequence Spec-
ification

In order to model RAID operations, directed, acyclic graphs, which we will
referr to as DAGs, are used. By using DAGs to model RAID operations
consisting of primitive RAID operations, it is guaranteed that the set of
primitive operations has a strict partial order. In other words, for all a, b,
and c in the set of primitive RAID operations, we have that:

• ¬(aRa) (irreflexivity)

• if aRb then ¬(bRa) (asymmetry)

• if aRb and bRc then aRc (transitivity)

Thus every DAG representation of a RAID operation contains all ordering
constraints which bind the primitive operations together.

Figure 3.1: DAG - Small RAID 4/5 write operation representation.

Figure 3.1 illustrates a DAG which shows a small RAID 4/5 write opera-
tion. A node represents a primitive RAID operation and the directed arcs
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represent data or control dependencies between primitive operations. The
Read-XOR arcs for example imply a data dependency since parity is com-
puted from the old data. If a graph does not contain a single source or sink
node, an extra NOP node is added which has no effect upon the RAID array
operation represented by the graph.

3.2.1 Graph Representation of Error Recovery Strategies

Since RAID operations also need to be able to cope with errors, it is nec-
essary to implement some type of error recovery. Basically there are two
possible approaches to error recovery, namely foward error recovery and
backward error recovery.

Forward error recovery requires anticipating all possible errors and manu-
ally coding all actions for completing operations once an error occured [8].
This approach usually requires a lot of code and is hard to modify once
it has been layed out to handle a set of errors appropriately. Backward
error recovery is an approach which is mainly used in database systems sup-
porting transactions. The concept of transactions allows the composition of
undoable atomic database operations. Thus if an error occurs in the middle
of a transaction, the system undoes all effects of that transaction and pro-
vides the illusion that the transaction never occured. In order to make this
error recovery approach feasible, it is necessary for the underlying database
system to detect and recover from errors at the cost of keeping logs of all
operations which happen during the transition of one consistant state into
another.

RAIDframe implements a hybrid approach called roll-away error recovery.
This approach is incorporated within DAGs and it basically combines foward
error recovery without the need of accounting for all possible error scenarios,
and, when necessary, it uses backward error recovery without the cost of
logging state information [8]. If possible, RAID operations are split into
two phases by introducing a commit barrier to the DAG, where phase one
contains all operations which access data without modyfing it, and phase two
consists of all operations which actually modify symbols on disk. Therefore
a Commit node is added to the DAG to distinguish between these two phases.

The small RAID 4/5 write example can be split into two phases by in-
truducing such a Commit barrier as shown in figure 3.2. Phase one would
contain all primitive RAID operations which can be undone easily like disk
Read operations and the parity XOR calculation, and phase two contains all
operations which modify data words like the actual update of parity and
data information. Thus the Commit node prevents writes of new data from
proceeding until all reads of old data and the computation of parity have
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completed. One can think of such Commit nodes as the sink of all read
operations and the source of all Write operations.

Figure 3.2: DAG - RAID operation representation with Commit barrier.

Going even further, we can think of these DAGs as state machines, thus all
methods of automated model checking can also be applied to DAGs, which
means that it is possible to verify RAID designs before implementing them.

3.3 RAIDframe Features

The original purpose of RAIDframe was to provide an environment where
RAID experiments could easily be performed, and where new RAID algo-
rithms could easily be implemented and tested. As distributed by CMU1,
RAIDframe consisted of a RAID simulator, a user-land disk driver, and a
kernel-level device driver for (then) Digital Unix. RAIDframe, as found in
various BSD flavors today, is a fully-integrated kernel-level device driver
supporting many features such as:

• Hot Spares - these are disks which are on-line, but are not actively
used in an existing file system. Should a disk fail, the raid driver is
capable of reconstructing the failed disk on to the hot spare.

1CMU - Carnegie Mellon University



INTERNAL ARCHITECTURE 14

• Component Labels - contain important information about the com-
ponent such as a user-specified serial number, the row and column of
that component in the RAID set, and whether the data and parity on
the component is clean. If the RAIDframe driver detects that compo-
nent labels are very inconsistant (e.g. the serial numbers do not match
or the label is not consistant with the assigned place in the set), the
device will fail to configure.

• Root on RAID - means that a RAID filesystem can be used as the
root filesystem.

RAIDframe provides a number of different RAID levels including basic
RAID architectures as well as a number of experimental architectures:

• RAID 0 - provides simple data striping across the components.

• RAID 1 - provides mirroring.

• RAID 4 - provides data striping across the components, with parity
stored on a dedicated drive (in this case, the last component).

• RAID 5 - provides data striping across the components, with parity
distributed across all the components.

• Even-Odd parity

• Chained declustering - the primary data copy in disk i, has backup
copy on disk(i + 1) mod n, where n is the total number of disks em-
ployed.

• Interleaved declustering - the backup copy of the primary data of a
disk is broken up into multiple subpartitions where each of the sub-
partitions is stored on a different disk within the same disk array [2].

3.4 Internal Architecture

RAIDframe provides extensibility through separation of architectural pol-
icy from execution mechanism [3] by splitting the internal architecture up
into several modules which seperate stable infrastructural code from user
modifiable library code.

Figure 3.3 displays all major RAIDframe modules:

• State Machine: A central state machine is responsible for processing
user requests by creating graphs and submitting them for execution.
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Figure 3.3: RAIDframe - Infrastructure and Modules.

For user initiated disk access requests and the reconstruction process,
most RAID architectures use a state machine which is illustrated in
figure 3.4.

Most RAID architectures use a state machine which is similar to the
left hand side of figure 3.4.

• Graph Execution Engine: This engine is the primary infrastructure
module of RAIDframe and it is solely responsible for executing a DAG,
while trying to exploit a maximum level of parallelism when executing
primitive RAID operations. Since a DAG is a very general Datastruc-
ture, the Graph Execution Engine does not need to have any knowledge
about the RAID architecture represented by the DAG.

• Disk Interface: This module organizes pending disk operations based
on queing disciplines specified at the time of configuration.

• Disk Queue Module: RAIDframe allows to queue disk requests either
directly at the disks or within RAIDframe itself. If queueing within
RAIDframe is selected, multiple queueing policies like First In First
Out (FIFO), Shortest Seek Time First (SSTF) etc. are available.

• Disk Geometry Database: This database contains disk parameters
like tracks per cylinder, as well as perfomance parameters like seek
time or rpm, for the disk simulator.
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• Mapping: Before any block ranges are locked in the disk array, all
access goes through this module which invokes RAID architecture spe-
cific mapping routines which are able to map the correct sectors and
parity units for a given RAID address.

• Graph Selection: Each RAID architecture requires a graph selection
algorithm which selects the appropriate DAG from the graph library
for a specific user request, given the current state of the RAID array.

• Graph Library: This library includes functions which are capable of
creating DAGs when called by the graph selection engine.

• Primitive Operations Library: These functions implement the prim-
itive RAID operations instruction set such as XOR or DiskRD and thus
abstract single device operations.

3.5 Reconstruction Architecture

3.5.1 Reconstruction Algorithm

A reconstruction algorithm is a strategy used by a background reconstruc-
tion process to regenerate data that existed on the failed disk and store it on
a replacement disk [7]. RAIDframe uses a disk-oriented instead of a stripe-
oriented reconstruction algorithm as described in [7], mainly because the
disk-oriented algorithm performs much better at consistently utilizing all
disk bandwidth not absorbed by user access for disk reconstruction. Instead
of creating only one reconstruction process as it is done with the stripe-
oriented approach, C reconstruction processes are created, where C − 1
processes are associated with the surviving disks, and the remaining process
is associated with the replacement disk. The algorithm for the surviving
disks is as follows:

• repeat

1. Find the lowest numbered unit on this disk that is needed for
reconstruction.

2. Read the indicated unit into a buffer.

3. Wait for the read to complete.

4. Submit the unit’s data to a centralized buffer manager for further
processing.

• until (all necessary units have been read)
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The replacement disk implements the following algorithm:

• repeat

1. Request a buffer of reconstructed data from a centralized buffer
manager.

2. Issue a write of the buffer to the replacement disk.

3. Wait for the write to complete.

• until (failed disk has been reconstructed)

3.5.2 Reconstruction State Machine

Whenever a disk fails, a seperate state machine which is responsible for
the reconstruction process is initiated, and works in parallel with the state
machine which is responsible for user initiated disk access requests (see figure
3.4).

Figure 3.4: RAIDframe - State machines.
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Of course the reconstruction process has a lower priority than user-initiated
access requests. It dispatches reconstruction disk accesses in a batch style
manner until all data on the failed disk has been restored.

3.6 Extensibility of RAIDframe

After this coarse architectural overview and insights into the key ideas of
RAIDframe, it would also be interesting to look at what actually needs to
be done to add a new RAID architecture to the Framework. Obviously this
task should not be that hard because of the power and flexibility which
RAIDframe provides.

The following listing describes major steps which are necessary in order to
extend the RAIDframe framework with a new architecture:

• Register Architecture: First of all it is necessary to register the
new architecture and implement a layout-specific parsing routine. Thus
RAIDframe will be able to call the appropriate parsing callback func-
tion upon discovering the use of the new architecture in the configu-
ration file.

• Configure and Initialize Architecture: One must also hook up
array- and layout-specific start-of-day configuration and initialization
functions in order to be able to allocate any extra resources the new
RAID architecture needs.

• Define Mapping Functions: Since the raid device address space which
get’s exported to the host is only a logical representation, it is neces-
sary to map these logical addresses and parity locations to the correct
physical addresses in the RAID array (see figure 3.5). The two most
important mapping functions are:

– MapSector: This function implements the mapping of logical
sectors to physical disk array sectors. Each array architecture
must implement such a mapping function which must yield a
unique mapping to the physical disks.

– MapParity: This function is similar to the MapSector function
except that it maps a logical parity sector to a physical parity
sector.

• Define Stripe Identification Function: This function identifies
which physical disks contain sectors in a particular stripe.
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Figure 3.5: RAIDframe - Logical to physical address mapping.

• Implement DAG Selection Functions: Whenever an I/O request
enters the RAID system it is passed through this function which is
basically responsible to choose the appropriate DAG create function
for this particular RAID access type.

The above steps represent the most important steps when implementing
a new RAID architecture. It would be a tremendous and tedious task to
design and test a new RAID architecture without this framework. The most
important advantage of RAIDframe though is, that very well tested code can
be reused at these low level layers.
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Chapter 4

Distributed Storage

4.1 Overview

The most common setup for computer storage systems is to use the so
called Direct Attached Storage (DAS), also referred to as local storage. DAS
refers to storage that is directly connected to the local bus system of the
computer. Some common buses for local storage access are Small Computer
System Interconnect (SCSI) or Parallel Advanced Technology Attachement
(P-ATA), nominally refered to as IDE, and more recently, Serial Advanced
Technology Attachement (S-ATA).

DAS has several limitations. The biggest one is that every host has its own
private storage system. One might think that because of the low prices per
storage unit this wouldn’t matter these days. But looking closer at the value
of a computer system, the data of even a small company is quickly worth
more than EUR 1000000. So storage is cheap but data is costly. The idea
behind distributed storage is to use synergies between individual computers,
thus minimizing storage administration and lowering the much cited Total
Cost of Ownership (TCO).

Distributed storage systems combine networking technology with storage
technology. There are several different systems in use today, which can be
classified based on several features, like:

• Use of existing infrastructure vs. new infrastructure.
Does the storage system use existing networking hardware, like Twisted
Pair cabling, Ethernet Network Adapters and Switches, or does it op-
erate on completely new networking hard- and software?

• Separated storage systems vs. combined storage and data networks.
Is it possible to plug in a storage system next to an ordinary network
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server and use it over the same network? This implies that existing
network technologies are used.

• Purely software based systems vs. hybrid systems.

• Data Access format.
How is data accessed over the network? - In raw block form (logical)
or based on a networked file systems.

• Concurrency.
Is it possible to access the storage node from more than one system at
the same time?

This section will discuss the following common distributed storage technolo-
gies:

• Storage Area Network (SAN):
The concept of SANs is more or less a networked version of DAS.
Instead of having a point-to-point connection between a host and a
storage device, several hosts can access storage devices on an often
separated network. The protocol for SAN is like block oriented DAS.

• Network Attached Storage (NAS):
Operates on existing networking technology. NAS uses the concept of
network filesystems, where the server exports files/filesystems based
on a specific protocol. NAS servers are more or less file servers which
hide the storage management from the other nodes. NAS servers are
data access file oriented, which implies that both the data access and
the metadata access have to rely on the server.

The rest of this chapter will introduce three different storage concepts, start-
ing with Direct Attached Storage followed by a discussion about Storage
Area Networks and Network Attached Storage.

In the next chapter we will look at Distributed Storage over TCP/IP net-
works. First we introduce iSCSI as a SAN technology over TCP/IP, and
then we take a closer look at NFS as an interesting NAS protocol, that
can be used over IP networks. At the end of this chapter we will see a
performance evaluation between these two protocols.

4.2 Local Storage: Direct Attached Storage

Direct Attached Storage (DAS) is used in most computer systems today. In
DAS every computer has it’s own local storage system. Since we will often
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refer to DAS in this paper, we explore the details of a typical DAS setup in
greater detail now.

DAS is also called local or non networked storage. Typical server environ-
ments use a Small Computer System Interface (SCSI) and nowadays also
Serial Advanced Technology Attachment (S-ATA) environment to connect
to local storage.

A typical SCSI setup consists of:

• Host Bus Adapter (HBA) attached to the computer

• SCSI controller on every device

The HBA is directly plugged into one of the computers internal IO buses like
PCI, PCMCIA, .... The operating system driver knows how to talk to the
HBA and the SCSI HBA talks to the storage devices on the SCSI bus via the
SCSI protocol. For the storage devices (eg. hard disks) to understand the
SCSI protocol, it has to have an embedded SCSI controller which converts
the SCSI commands to device specific actions.

The data access method is very low level. It is based on a block granularity
level. Blocks are typically multiple physical sectors and it is the duty of the
user (e.g. the operating system) to keep track (a) to which storage device
on the SCSI (or ATA) bus it wants to talk to and (b) which sectors it wants
to access.

Addressing of SCSI devices typcially involves the following information:

• SCSI adpater (HBA) number (host)

• SCSI channel number (bus)

• SCSI ID number (target)

• Logical Unit Number (LUN)

Each HBA may control one or more SCSI buses, each SCSI bus can have
multiple devices attached to it. The HBA also shows up as a SCSI device
and is called the initiator. Each SCSI device has exactly one SCSI ID. But
a SCSI device can have multiple Logical Unit Numbers (LUNs). LUNs are
important for storage devices which have more than one storage unit, for
instance sophisticated tapes or CD changers which can talk to multiple CDs
simultaneously. So the addressing path for a device unit in a SCSI setup is
the path < host, bus, target, LUN >.

Addressing sectors on a storage device is also abstracted by generic geometry
information:
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• Cylinder (one track on all platters)

• Heads

• Sectors

The smallest addressable unit of a storage device is often called a sector. The
size of a disk is made of sectors ∗ cyclinders ∗ heads. In the past, this was
really the way to address data on disks, but today this is only a high level
addressing mode which gets translated to the actual physical information
by the storage disk. In fact other storage devices, like flash disks or USB
sticks, often use these addressing modes.

So the total path of a sector in a typical SCSI setup looks like:
< host, bus, target, LUN > . < cylinder, head, sector >.

4.3 Storage Area Networks (SAN)

Storage Area Networks (SANs) are basically Direct Allocated Storage (DAS)
devices with a longer wire. This means that they also use a block oriented
raw access to storage devices, like ATA or SCSI devices in DAS. Typically
SANs also use their own network infrastructure (hard- and software) to
access the SAN devices. These two factors, distinguish SANs from its direct
counterpart, the NAS technology, which we discuss in the next section. NAS
works through a networking filesystem and uses an already existing network
infrastructure.

SAN can be thought of as an extension of DAS, where DAS is a point-to-
point link between the storage and the server (each server has its own DAS
infrastructure), and a SAN allows many computers to access many storage
devices over a shared network.

Most SANs in use today are based on Fibre Channel Technology. Fibre
Channel is a whole network stack for performing serial network communica-
tion. Fibre Channel was developed for supercomputer communication and
is nowadays most often used in SANs.

There are 3 Fibre Channel topologies:

• Point-to-Point: Two devices are connected back to back.

• Arbitrated Loop: All devices are in a loop or ring, similar to the token
ring topology.

• Switched Fabric: All devices are connected to Fibre Channel switches,
similar to modern Ethernet implementations.
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Fibre Channel can also be combined with other higher layer protocols, like
IP or even SCSI over Fibre Channel. Fibre Channel currently supports
speeds at 1 GBit/s and 2 GBit/s while products at higher speeds are being
developed.

A SAN works like a distributed DAS. Each computer (or host) participating
in a SAN has one or more SAN HBAs. The host itself is referred to as
the initiator as opposed to DAS where the HBA is the initiator. Another
difference is that in a DAS setup there is always exactly one path to the
storage system. In a SAN setup there can be multiple paths to the same
storage device.

These new concepts also changed the way operating systems see storage
devices. Operating systems have to adapt from the static view of storage
devices, which get discovered at startup, to a distributed view. With DAS,
pluggability was often impossible. Adding, changing or removing a storage
device usually meant that the DAS had to be disabled or the computer had
to be restarted.

SANs on the other hand add much more powerful ways to discover and
maintain storage devices. For instance SAN devices can be mulitpathed,
the operating system can not rely that the path to the device will stay the
same over time, and thus uniquely identifies the storage device.

This makes it important to distinguish a specific path and the corresponding
device more clearly. When a device is first discovered by the SAN software,
a logical device has to be created. After that, every path pointing to that
device has to be combined under that logical device. Also the logical device
has to be stored persistently, so that the device names stay consistent over
reboots or even if all the paths get exchanged.

The traditional approach where the operating system deals exclusively with
a storage device, makes it impossible to share such devices without special
file systems. Thus, in order for multiple nodes to be able to use a shared SAN
device, other file systems, also called SAN filesystems or global filesystems,
have to be employed. These filesystems store additional information that
make them suitable for concurrent access. We will look into SAN filesystems
in greater detail when we discuss the Global Filesystem.

4.4 Network Attached Storage (NAS)

The term Network Attached Storage (NAS) is quite ambiguous. Taken
literally it just means that you attach a storage device into your network and
access that storage through some network communication. NAS is shared
storage. In practice NAS is commonly just a dedicated file server that can
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be accessed via a network file system.

Compared to SAN, NAS technology is not something new. One of the
earliest network applications was to access files stored on remote computers.
TFTP and later FTP were one of the first uses of the ArpaNet and later the
InterNet. Network Attached Storage (NAS) isn’t something revolutionary.
A NAS provider is more ore less a dedicated file server which aggregates all
the data of a computer network.

As already mentioned, NAS is not revolutionary. The NAS systems them-
selves are most likely built based on computer systems with DAS or even
SAN storage devices. The most important difference between SAN and NAS
is the way data is exposed and accessed. SAN clients access data as an ar-
ray of blocks. A NAS client on the other hand, accesses data as files in one
or more file systems. The first gets a so called handle to a data and then
manipulates the files through that handle.

A file system is an implementation of a file name space containing files. It
provides the basis for administration and space allocation. A file is a single
named object consisting of data and attributes, residing in a file system.
The term regular file is often used to refer to a simple byte stream, not a
directory or symbolic link. A file handle uniquely identifies a file on a server.

So a NAS device operates at a much higher level. The NAS server abstracts
from the raw block based access. Data access is based on files in a file
system. Thus the NAS protocol has to support much more concepts:

• File Manipulation

• Directory Manipulation

• Concurrency Control (locking)

• Access Control

• Advanced Topics

File Manipulation is all abouting creating, reading, writing and deleting files.
Directories are a way to hierarchically store files. Directory manipulations
deal with creating and deleting directories. Access control deals with who
is allowed to access certain files or directories. This is often referred to as
discretionary access control.

So instead of just reading and writing sectors or blocks at some geometric
location, a NAS storage device has to deal with many high level concepts.
For instance:
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• What is a valid file name?

• What is a valid directory?

• What is a valid path?

• Which transport protocol is used?

• What form of concurrency is allowed?

• How is a user identified?

There are many different network filesystems. The two most wide spread
protocols in use today are the Network File System (NFS), and the Com-
mon Internet File System (CIFS). NFS is a very popular Unix file system
originally implemented by SUN Microsystems. CIFS on the other hand is
the official name for the Microsoft Windows(TM) network filesystem.

Most NAS server appliances support multiple file systems. So you can choose
the network filesystem that fits best to your operating system.

A very critical point for NAS systems is data throughput and I/O perfor-
mance. The best NAS system is useless, when it can’t scale to the needs of
the NAS clients. We will explore this even further after having introduced
the other distributed storage concepts.
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Chapter 5

Distributed Storage over
TCP/IP

In this chapter we will look at concrete distributed storage protocols which
are specified to work over existing TCP/IP networks.

The SAN protocol over TCP/IP is the so called Internet SCSI (iSCSI). As
a NAS protocol we will discuss the NFS protocol in its latest release, which
provides special enhancements for working better over existing internet in-
frastructures.

We conclude this chapter by further comparing these protocols and evalu-
ating the performance of NAS and SAN based protocols.

5.1 SAN over TCP/IP - iSCSI

Internet SCSI (iSCSI) is a SAN technology with a special focus on existing
infrastructure. By taking the best technology from networking and DAS, it
uses the SCSI command set over the TCP/IP protocol.

Being a typical SAN protocol, it works on blocks (physical addressing). An
iSCSI client is called an initiator and an iSCSI storage device is called a
target.

Instead of a HBA the iSCSI initiator uses an ordinary Network Interface
Card (NIC). The iSCSI initiator communicates with a storage router or
gateway, which knows how to map the iSCSI commands to physical storage.

As can be seen in figure 5.1, iSCSI uses existing network infrastructures.
Instead of having to buy an expensive Fibre Channel HBA and switches,
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Figure 5.1: iSCSI compared to DAS and FC SAN.

existing Ethernet infrastructures can be used. Storage device manufactur-
ers also believe that existing devices could be more easily adapted, if the
command sets remains close to the already well known SCSI command set.

Back in the 80ties only few people believed that 10MBit Ethernet could be
enhanced. Now the first 10GBit network devices hit the store. Ethernet
has matured over time from a shared media network with low reliability,
to a very high performance switched networking system. And iSCSI builds
on these enhancements in Ethernet technology to achieve its performance
goals. 10GBit Ethernet and NICs with TCP Offload Engines (TOE) will be
an interesting opportunity for iSCSI based SANs.
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5.2 NAS over TCP/IP - NFS and NFSv4

NFS has a long history as a popular Unix network filesystem. NFS is a
typical application of a Remote Procedure Call (RPC) architecture. All
file system operations are forwarded via RPC to another host. The proce-
dure arguments and return values are marshalled in a special format, called
External Data Representation (XDR).

NFS has the following characteristics:

• Design for easy recovery.

• Independent of transport protocols and operating systems.

• Simplicity.

• Good Performance.

The functionality of NFS is defined in terms of RPC messages. Up to version
4, each procedure represents a particular action that a client may perform,
like reading from a file, writing to a file, creating or removing a directory.
For the server to perform any action, you have to pass the server a valid file
handle. It is much like performing local file system operations with a longer
wire.

5.2.1 NFS Version 2 and 3

NFS exists in 3 major flavors: Version 2 and 3, and the only recently released
Version 4. NFS Version 2 and 3 are pretty similar. In NFSv2 and v3 all
actions map directly into RPC procedures. Initially RPC was only done via
the unreliable UDP. Starting with NFSv3, TCP could also be used.

Up to version 3, NFS was a stateless protocol. That means the server doesn’t
keep any information about the clients between requests. No state is lost if
the server crashes. File handles, the central concept of file manipulations,
must thus be unique. NFS directly exports Unix inode numbers as file
handles, which uniquely identify files on a local filesystem. This was a
very efficient way of performing remote file operations. But this also led to
problems when using NFS on non Unix platforms, which often don’t employ
the technique of inodes.

NFSv2 and v3 really are a whole suite of protocols on top of RPC. The suite
consisted of:

• mount protocol (MNT)
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• network file system (NFS)

• network lock monitor (NLM)

• network status monitor protocol (NSM)

The mount protocol provides operating system specific services to get NFS
off the ground. It looks up server path names, validates user identities, and
checks access permissions. Clients use the mount protocol to get the first
file handle, which allows them entry into a remote file system.

The mount protocol was kept separate from the NFS protocol to make it easy
to plug in new access checking and validation models without changing the
NFS protocol. The only information shared between the mount protocol
and NFS up to version 4, is the file handle structure. In a typical Unix
NFSv3 implementation this daemon is called mountd.

The network status monitor protocol (NSM) is needed for the lock monitor,
which needs per host status information, such as reboots. This protocol is
often provided by a daemon called statd.

Locking is a stateful protocol. In Version 2 and 3 of NFS, locking was not
mandatory. In order to keep the NFS protocol slim and simple, locking is
the job of a separate service. The network lock monitor knows which files
are in use and manages lock information. It works in conjunction with the
NSM protocol in order to release locks after a client reboot has happened.
This service is often implemented as lockd.

Remember that the whole NFS suite works over RPC. So in addition to these
protocols, a typical NFSv3 implementation needs a SUN RPC stack, and a
special service called portmap or rpc.portmap. It is a so called portmapper,
that maps RPC program numbers to TCP or UDP port numbers. Before
sending a request to a RPC service, a client has to talk with a portmapper
to get the port number for that service.

5.2.2 NFS Version 4

NFS Version 4 (NFSv4) is a major change in the NFS design. The require-
ments for NFSv4 were:

• Improved access and good performance on the Internet.

• Strong security, with security negotiation built into the protocol.

• Enhanced cross-platform interoperability.
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• Extensibility of the protocol.

Among the most important changes are:

• Eliminating helper protocols (nfs, mountd, nlm, nsm).

• Introduction of COMPOUND to reduce roundtrip time.

• Statefulness (introduction of Open and Close).

• Works better across firewalls.

• Adds strong security features.

5.2.3 NFS example

A simple operation like reading a file named “x/work.txt” involves the fol-
lowing abstract file system operations:

• Mount the remote filesystem

• Open file handle

• Read file (multiple times)

• Close file

To mount a filesystem means making it accessible through the UNIX filesys-
tem API. A Windows(TM) user can think of mounting as mapping a network
drive, only that you can mount a file system anywhere in the file tree.

In a typical unix environment, one would write the following commands to
mount the subfilesystem vol0 from zeus to the local directory called mnt
and read the first of 32 kBytes from that remotely mounted file system.

mount zeus:/export/vol0 /mnt
dd if=/mnt/home/data bs=32k count=1 of=/dev/null

Using NFSv3, according to [17] the following sequences result from such an
operation:

-> PORTMAP C GETPORT (MOUNT)
<- PORTMAP R GETPORT
-> MOUNT C Null
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<- MOUNT R Null
-> MOUNT C Mount /export/vol0
<- MOUNT R Mount OK
-> PORTMAP C GETPORT (NFS)
<- PORTMAP R GETPORT port=2049
-> NULL
<- NULL
-> FSINFO FileHandle=0222
<- FSINFO OK
-> GETATTR FileHandle=0222
<- GETATTR OK
-> LOOKUP FileHanlde=0222 home
<- LOOKUP OK FileHandle=ED4B
-> LOOKUP FileHandle=ED4B data
<- LOOKUP OK FileHandle=0223
-> ACCESS FileHandle=0223 (read)
<- ACCESS OK (read)
-> READ FH=0223 at 0 for 32768
-> READ OK (32768 bytes)

This above sequence contains simplified output from an actual network trace.
Each of the 11 request and response pairs represent a network roundtrip.

The following traffic would result in an NFS version 4 network:

=> PUTROOTFH
LOOKUP ‘‘export/vol0’’
GETFH
GETATTR

<= PUTROOTFH OK CURFileHandle
LOOKUP OK CURFileHandle
GETFH OK
GETATTR OK

=> PUTFH
OPEN ‘‘home/data’’
READ at 0 for 32768

<= PUTFH OK CURFileHandle
OPEN OK CURFileHandle
READ OK (32868 bytes)

In the above example, the number of round trip requests for the same ap-
plication in NFSv4 compared to prior versions is reduced from 11 to two
request and response transactions.
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5.3 Performance of SAN and NAS protocols

There are two big families of distributed storage systems - SAN and NAS
architectures. These two vary mainly in the way network storage is seen.
SAN remains a block based view of the data, which closely resembles the way
DAS works. This leads to more flexibility and better throughput, because
of fewer overhead. NAS on the other hand exports file storage to its clients.
Operations are done on a file level, hiding the complexity of raw storage
inside the NAS server.

In NAS systems not only the storage is outsourced from the local host, but
also the whole file system, leading to slimmer host computers. This reduces
the TCO of server systems. But the NAS, beeing a high level file server, adds
much overhead to the storage device (NAS server). Such a NAS server can
soon become a bottleneck, especially in IO heavy applications with multiple
concurrent accesses.

In a recent paper two IP-networked storage protocols, one SAN and one
NAS protocol, are compared [18]. As already mentioned SAN protocols use
a block based access, whereas NAS protocols provide file based access to
data. As in the mentioned paper, these two will be referred to as block-
access and file-access protocols. The block-access protocol is the already
introduced iSCSI protocol, and the file-access protocol is NFSv4.

Figure 5.2: Block access protocol.

Figure 5.3: File access protocol.

A very important performance related difference of the two approaches is
that, although both protocols persist the metadata on the server, in the
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block-access protocol (see figure 5.2) the file system resides in the clients
memory and only gets serialized to special blocks on the server. In file-access
protocols (see figure 5.3) the meta-data resides entirely in the memory of the
server - if the client wants to do meta data access, it has to issue network
operations, for instance Remote Procedure Calls (RPC).

Compared to the block-access protocols, the server based metadata storage
in file-access protocols has a key asset in that sharing of storage between
multiple clients is much easier. There is one node, the server, that man-
ages all the metadata. In this comparison a point-to-point infrastructure is
assumed - one client talks to one server.

Figure 5.4: Typical NFS NAS Setup.

Figure 5.5: Typical iSCSI SAN Setup.

[18] concludes that the performance of NFS and iSCSI is comparable for
data intensive workloads, while iSCSI outperforms NFS by a factor of 2
or more for meta-data intensive workloads. Aggressive meta-data caching
and update aggregation of iSCSI is the main reason for this performance
difference. By enhancing NFS to improve its meta-data performance, the
authors show that this bottleneck of NFS can be reduced.

5.4 Where are we today?

A decade ago almost nobody believed in the high scalability of Ethernet.
But Gigabit Ethernet, intelligent Ethernet switches and high performance
network hardware along with very stable IP stacks have proven that existing
network infrastructure is an interesting option for storage networks. Even
big server systems like Google, CERN, and many more, are employing NAS
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technology today. The advantage of NAS is that existing storage technolo-
gies can be reused and accessed on a file basis over the network. But the
question of the unified network file system is by no way clear. Small instal-
lations would use popular network file systems like CIFS or NFS, but big
companies are building on their own implementations, as shown in [4].

One of the biggest drawbacks of SAN technology is its high price and its rare
employment. Also many of the disadvantages of cheap storage hardware has
changed as S-ATA has proved itself as a very high performance technology.
Even [?, TheCERNDiskStorage0405]refers S-ATA over SCSI/FC devices for
high availability.

But SAN vs. NAS is not always an either or. Both technologies can also
be used together. SAN is positioned on a much lower level and can be used
to implement a high performance NAS system. On the other hand the use
of iSCSI in conjunction with Gigabit Ethernet or 10 Gigabit Ethernet is
very promising. According to iSCSI, it is not ready for prime time yet. The
advantage of iSCSI is that it can be used to build storage servers based on
conventional DAS storage. For instance a big storage server based on S-ATA
can function as an iSCSI target on a high speed network, thus pushing SAN
technology into mid-level server installations.
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