
PortBrowser
A user interface for the BSD ports system

Handed in by
Böhm Igor

Supervised by
Dipl.-Ing. Albrecht Wöß

Institute for System Software
Johannes Kepler University Linz

Linz, April 2, 2005

Abstract

BSD operating systems offer a very powerful and flexible framework for in-
stalling third party packages, called the BSD ports system. This framework
provides a complete environment coupled with a rich set of commands, which
is able to build almost any kind of software from source code and package it.
Thus any piece of software which has been incorporated into the BSD ports
system, can easily be installed, deleted or upgraded.

The PortBrowser, a graphical front end for the BSD ports system, is a
light weight tool which offers a simple, portable, and secure environment for
the most frequent tasks provided by the ports system. It is a very useful
tool for novice as well as experienced users, since it allows for easy browsing
through the BSD ports tree, and offers search facilities to a certain extent.

This paper covers the basics and some details of various flavors of BSD
ports tree implementations, followed by a description of the PortBrowser
project. Implementation details as well as the GUI design of the PortBrowser
are covered and described in an easy to understand manner.

i

Table of Contents

Table of Contents . i

1 Introduction . 1
1.1 Structure of this Paper . 1
1.2 UNIX Software Management Tools 2

2 BSD Ports System . 3
2.1 BSD Ports Collection Basics 3
2.2 BSD Ports Infrastructure . 4

2.2.1 Targets . 4
2.2.2 Flavors and Multi packages 5
2.2.3 Port Flavors and Combinatorics 6

2.3 Package Tools . 8
2.3.1 pkg add . 8
2.3.2 pkg info . 9
2.3.3 pkg delete . 9

2.4 Upgrading Ports and Packages 10
2.4.1 FreeBSD approach . 10
2.4.2 OpenBSD approach . 11
2.4.3 NetBSD approach . 11

2.5 BSD Ports System Advantages 12

3 Port Browser . 13
3.1 Graphical User Interface . 13

3.1.1 Port Description View 13
3.1.2 Port Dependency View 14
3.1.3 Port Packing List View 15
3.1.4 Port Search Window 15
3.1.5 Port Operation Progress Window 17

3.2 Implementation . 18
3.2.1 Class Hierarchy . 18
3.2.2 Data Structures . 20
3.2.3 Parsing of Aggregated Ports Tree Information 21

TABLE OF CONTENTS ii

3.2.4 Safe Execution of Privileged Commands 21
3.2.5 Graphical Programming with GTK+ 25

4 Summary . 29
4.1 Future Work . 30

List of Figures . 31

Bibliography . 32

1

Chapter 1

Introduction

1.1 Structure of this Paper

In order to understand how the PortBrowser works and some of the de-
sign decisions which have been made during the development process, it is
necessary to understand the underlying BSD1 ports system.

But even before the introduction of the BSD ports system starts, a coarse
overview of various other state of the art UNIX software management tools
is given in chapter 1. This overview helps to understand the strengths and
weaknesses of the BSD ports system compared to other solutions.

In the subsequent chapter the basics and concepts of the BSD ports system
is described, followed by the description of the most important commands
which are necessary for every days work with the ports system. Most of the
descriptions apply to all BSD flavors, but also the advantages and disadvan-
tages of specific ports tree extensions which are only present in certain BSD
flavors, are covered.

Chapter 3 gives an introduction to the graphical user interface of the Port-
Browser coupled with operating guidelines and followed by an overview of
some implementation details like the class hierarchy, used data structures,
safe execution of privileged commands and graphical programming.

The last chapter summarizes the results of this thesis and the practical part
of this project and gives a short outlook for various planned improvements
for future PortBrowser releases.

1BSD - Berkeley Software Distribution is the name of the UNIX derivative distributed by the
University of California, Berkeley starting in the 1970s.

UNIX SOFTWARE MANAGEMENT TOOLS 2

1.2 UNIX Software Management Tools

In the early days of UNIX, installing a program from source code was often
a very tedious and error prone act. Every systems administrator had to
understand the platform a program had been written for, and its differences
from their platform, before they had a hope of porting a chunk of code [4].
Sometimes it was even necessary to rewrite parts of a program from scratch
because of basic assumptions which didn’t hold on a specific system.

Thus a variety of package management tools evolved on many UNIX like op-
erating systems, which make the task of installing and or removing third
party software a lot more transparent for the user. Basically the idea be-
hind these tools is that the user should not have to worry about things like
dependency requirements, build and configure tools and many more things
which may be necessary during the installation and or removal process of
software packages.

In order to be able to compare the BSD ports system with other approaches,
it is necessary to take a look at popular package management tools like RPM,
which stands for RedHat Package Manager, or Debians package maintenance
system dpkg. A more detailed comparison explaining conceptual differences
between the BSD ports system and other approaches will be given in the
subsequent chapter.

The RPM Package Manager and Debians dpkg are both powerful command
line driven package management systems capable of installing, uninstalling,
verifying, querying, and updating computer software packages. Each soft-
ware package consists of an archive of files along with information about the
package like its version, a description, and the like. There is also a related
API, permitting advanced developers to bypass ’shelling out’ to a command
line, and to manage such transactions from within a native coding language.
Both RPM and dpkg have been designed for binary package management.

There are also a variety of graphical front ends for RPM like YaST2, and
Synaptic for dpkg. The primary goal of these graphical front ends is to
simplify the task of selecting, searching, updating, installing and deleting
software packages for the user. The design of the PortBrowser has been
driven by similar goals but with a special emphasis on simplicity, usability
and portability amongst various BSD flavors.

2YaST - Yet Another Setup Toolkit is an operating system setup and configuration tool that
is featured in the SUSE Linux distribution.

3

Chapter 2

BSD Ports System

The BSD ports collection offers a simple solution for users and administrators,
which enables them to transparently install various third party software ap-
plications. Such third party software applications are referred to as ”ports”,
where a ”port” is simply a set of instructions usually combined with patches
for compiling a piece of software.

2.1 BSD Ports Collection Basics

Basically all that is needed in order to be able to install a port is to find the
directory in which all the port specific information is located, and execute
the command make1 install. This command triggers many actions like
downloading the source code from the network, confirming the checksums,
uncompressing, patching, building and installing the chosen port.

Usually the most difficult part for many users is to find a port which provides
a certain functionality. Since all the information is kept in plain text files,
classical tools like grep2 and find3 can be used to search for certain ports.
In order to speed up and to simplify the search process, the most important
parts of every port are aggregated into one INDEX file.

1make - is a computer program that automates the compilation of programs whose files are
dependent on each other.

2grep - file pattern searcher.
3find - walks a file hierarchy locating files based on some user-specified criteria.

BSD PORTS INFRASTRUCTURE 4

2.2 BSD Ports Infrastructure

The ports tree master Makefile fragment bsd.port.mk, contains all the
standard routines which is used by the ports tree. Since the various BSD
flavors have adapted their ports system collections to their specific needs,
the ports tree layout is not the same on every xBSD system. OpenBSD will
serve as an example to describe the most important parts of the BSD ports
infrastructure.

A port itself is fairly simple. It contains a Makefile which holds all the nec-
essary information that is needed in order to build the downloaded source
code, like the version of make which should be used, which compiler is
needed, or dependency requirements which need to be satisfied before the
port can be installed. The distinfo file contains distfile checksums,
where the term distfile simply denotes a file of source code. The DESCR
file contains a longer description of the port, usually including an URL for
further information. The PLIST file contains a list of all the files a port in-
stalls and which are independent of whether the architecture supports shared
libraries or not. If a port provides shared libraries, the file PFRAG.shared ex-
ists and lists the extra files which need to be installed for architectures which
support them. The PFRAG.noshared file lists only files being additionally
installed on architectures without shared library support.

2.2.1 Targets

In order to get a better overview of what happens when one goes to a port
directory and types make install, it is necessary to take a look at the
targets which control individual ports:

• fetch: Fetch all of the files needed to build a port.

• checksum: Verify that the fetched distfile matches the one the port
was tested against.

• depends: Install any dependencies of the current port.

• extract: Expand the distfile into a working directory.

• patch: Apply any patches that are necessary for the port.

• configure: Configure the port.

• build: Build the port.

BSD PORTS INFRASTRUCTURE 5

• fake: Pretend to install the port under a subdirectory of the work
directory where the work directory is the directory where all port ac-
tivity occurs. Apart from the actual port, the work directory may also
hold all kinds of cookies that checkpoint the port’s build.

• package: Create a binary package from the fake installation. This
binary package can be used to install the port on several machines us-
ing pkg add (see next section for more information about the package
tools).

• install: Install the resulting package.

There are also other targets which can be called but they do not run during
the normal install process and usually deal with cleaning up, reinstalling or
printing extended information about ports like build or run dependencies
which need to be satisfied.

The lock infrastructure which has been implemented in the BSD ports tree
allows for concurrent builds of several ports at the same time. The lock-
ing protocol follows a big-lock model where each top level target in a port
directory will require the corresponding lock, complete its job and then re-
lease its lock. This means that while one concurrent install process is in the
fetch target stage, another concurrent install process can be in the build
stage and so on. Thus this feature is really handy for bulk package building
because it speeds up the process by utilizing the available resources much
more efficiently.

2.2.2 Flavors and Multi packages

The OpenBSD ports tree comes with two orthogonal mechanisms [1] called
Flavors and Multi packages. Because of these mechanisms the user can select
specific options provided by a given port. A good example of the Flavor
mechanism would be the text editor port of vim4. By looking at the FLAVORS
variable in the Makefile which is located in the ports respective directory,
one will see that there are 9 different Flavors which can be specified. Thus
the user has the option to compile vim with gtk5 support or without X11
support and so on. To avoid confusion with other packages or flavors, the
package name will be extended with a dash-separated list of the selected
flavors.

The Multi packages mechanism is used when a smaller package can be broken
down into several smaller components, referred to as subpackages. Again

4vim - vi clone with many additional features.
5gtk+ - Gimp Toolkit. A multi-platform toolkit for creating graphical user interfaces.

BSD PORTS INFRASTRUCTURE 6

a good example for the Multi packages mechanism would be the gtk+2
port. By looking at the MULTI PACKAGES variable defined in the Makefile, it
becomes obvious that the gtk+2 port is broken down into two packages where
the default installs the multi-platform graphical toolkit, and the defined
Multipackage -docs creates and installs the documentation for gtk+2. If a
port is ”subpackaged”, in addition to the main package, each subpackage
will have a corresponding description in the the DESCR-subpackage file.

Port installation example using Flavors and Multi packages

$ cd /usr/ports/editors/vim

$ env FLAVOR="gtk2 huge" SUBPACKAGE="-lang" make install

Together, Flavors and Multi packages account for OpenBSDs ports tree being
somewhat smaller than the other BSDs, as they allow one single port directory
to build lots of distinct packages.

FreeBSD offers a similar but less flexible mechanism through the OPTIONS
directive which can be defined in a ports Makefile. This mechanism also
provides hooks that the port author can use to control which configuration
of the corresponding port should be built. The FreeBSD approach is similar
to OpenBSDs Flavors, even though it must be mentioned that the OpenBSD
project offers a more fine grained and cleaner implementation which makes
it possible to really exploit all the options certain ports are able to provide
in a very compact and optimal way.

2.2.3 Port Flavors and Combinatorics

This section covers a problem which occurs when there are many ports with
various flavors in the ports tree. It basically explains why it is not feasible
at the moment to display complete information about a port and its flavors
in the PortBrowser. Ways to work around this problem will be discussed
in the last chapter.

Even though there is much power and flexibility available with the Flavor
and Multi packages concept, some drawbacks must be taken into account
when trying to aggregate ports tree information into one large INDEX file.
Suppose that for each flavored port, there should be an entry in the INDEX
file which lists the port without flavors, and there should also be entries for
all possible combinations of flavors for that specific port. This would indeed
be a very nice feature, since it would be possible to quickly skim through
all flavor combinations a port provides, without having to look in the ports
Makefile for that information. Let’s use the vim port again as an example
to demonstrate the problem:

BSD PORTS INFRASTRUCTURE 7

• Question: The vim port has 9 flavors. How many combinations of
flavors are possible?

There is a very similar problem in the theory of sets, which arises when one
tries to find the amount of distinct subsets of an n-element set. Actually,
the problem of finding out how many distinct subsets of an n-element set
exist, is exactly the same problem as with our combinations of flavors. Thus
if we find a generation formula for the amount of distinct subsets within
an n-element set, we have found a solution for the original problem. So
there are 2n distinct subsets of an n-element set, including the empty set as
well as the set itself. The big problem is that this grows exponentially, thus
imposing a limitation on the amount of ports which should be aggregated
in the INDEX file:

• Answer: 29 = 512 entries in the aggregated INDEX file would be
needed in order to register all possible combinations of flavors which
the vim port provides.

So if there are a couple of ports with several flavors, the representation
of those ports with all of their possible flavor combinations would quickly
exceed the total amount of available unflavored ports in the whole ports
tree.

Now there is also the case where certain combinations of flavors are not
feasible. An example for this case would be the combination of the no x11
flavor with the gtk flavor of the vim port, since it is not possible to build vim
with gtk support without X11 libraries. So even though this case reduces
the amount of combinations of flavors for the vim port, it increases the
complexity on the algorithm which tries to find all combinations of valid
flavors.

The OpenBSD ports system implements a solution for this problem, where
the common case has been made fast, and the rare case involves additional
work, but still offers the same functionality. If there exists a common and
frequently used combination of flavors for a port, this combination is defined
as the default by the port maintainer, and also gets registered in the aggre-
gated INDEX file. Thus there are at most two versions of a port registered in
an INDEX file, the unflavored version, and the version including the default
flavor of a port. For all the other combinations the user is advised to look
into the corresponding ports Makefile.

PACKAGE TOOLS 8

2.3 Package Tools

Packages are the binary equivalent of ports, which have been described in
the previous sections. Usually a small collection of pre-compiled packages
is available for most common architectures. A compiled port becomes a
package that can be registered into the system using the pkg add command.

2.3.1 pkg add

The pkg add command is used to install packages. Such packages contain
pre-compiled applications from the ports tree and usually can be found on
ftp mirrors or official BSD distribution CDs. Each package name may be
specified as a file name, which normally consists of the package name itself
plus the ”.tgz” suffix, or an URL pointing to FTP, HTTP or SCP loca-
tions. This implies that installing a package is as easy as typing pkg add
pkgname.tgz. It is usually very useful to also set the PKG PATH environment
variable since it is evaluated by pkg add. Thus pkg add can resolve and
fetch all dependent packages from the correct place and one does not always
need to specify the complete path to the package repository:

pkg add installation example

$ export PKG PATH=ftp://ftp.openbsd.org/pub/OpenBSD/3.6/packages/i386/

$ pkg add vim-6.3.13-no x11.tgz

In order to understand how pkg add works, it is necessary to look at the
steps which it walks through. First of all, the ”packing information” of a
package is extracted into a temporary directory so that pkg add can perform
the following checks:

• check if the package is already recorded as installed

• check whether the package conflicts with an already installed package

• check if the architecture for which the package was compiled matches

• check if all dependencies have been resolved

• check for collisions with installed file names

After those checks have been performed and no conflicts have been found, in-
stall scripts which may have been hooked into the ”packing information” are
executed. Then the package contents, except the ”packing information”, are
extracted to their final locations. After the installation is complete, a copy

PACKAGE TOOLS 9

of the packing list, deinstall script, description and display files are copied
into /var/db/pkg/<pkg-name> for subsequent possible use by pkg delete.

2.3.2 pkg info

The pkg info utility is used for displaying information on software packages,
which may still be packed up or already installed on a system. There are
many command line parameters which make it possible to adjust the amount
of information pkg info should display. The following example outputs only
the one line comment field for a package:

pkg info example

$ pkg info -c pb-browser

Information for pb-browser-0.3

Comment:

Graphical Ports System front end

As mentioned before, there are many more parameters which can be passed
to pkg info, but it is not the purpose of this document to list all of the
options and the interested reader can find a description of all the parameters
in the respective OpenBSD manual pages.

2.3.3 pkg delete

The pkg delete command is used for deleting previously installed software
package distributions. In order to specify the package which should be
deleted it is enough to provide the package name itself, or as a filename
which consists of the package name followed by the ”.tgz” suffix, or as a full
pathname like /var/db/pkg/pkgname, so that shell wild cards can be used.

Before pkg delete can remove a package, it has to check whether the pack-
age is required by other installed packages not mentioned in the list of pack-
ages to remove. If that is the case, pkg delete will list those dependent
packages and refuse to remove the package.

pkg delete example

$ pkg delete /var/db/pkg/gnome-session-2.6.2

pkg delete also checksums files before it deletes them so if a file has been
edited by a user and thus the checksum changed, it will normally notify the
user and not remove the changed file.

UPGRADING PORTS AND PACKAGES 10

2.4 Upgrading Ports and Packages

Being able to upgrade ports and packages on a production system is an
important requirement for many system administrators and users. Even
though the various BSD flavors implement this functionality, it is interesting
to look at the different approaches they have taken.

2.4.1 FreeBSD approach

The FreeBSD project provides the portupgrade tool in order to untangle the
port upgrade mess [5] which occurs when one has many packages installed.

The tools included in portupgrade implement some new features into the
FreeBSD ports system. First there are pkgdb and portdb, which build
databases to index the contents of /var/db/pkg, the place where all in-
stalled packages are recorded, and the ports tree itself. This is done in order
to accelerate searching and manipulating this information. The pkgdb and
portdb tools even rewrite files located in /var/db/pkg to maintain consis-
tency. Finally, there are wrappers for the various pkg * tools which handle
both, rewriting the plain text records located in /var/db/pkg and the in-
dexed databases. The following are some of the most important wrapper
tools which portupgrade offers:

• portinstall: helps to install new ports in a handy way.

• portcvsweb: a tool to instantly browse a history via CVSweb.

• portversion: a tool to compare installed packages with the ones in
the ports tree.

• portsclean: a tool to clean ports and packages garbage like unrefer-
enced distfiles, working directories and old shared libraries.

• pkg deinstall: a package deinstaller with wild cards and dependency
recursion support.

• pkg fetch: a remote package fetcher.

Even though with all of these tools the ports and packages upgrade is pos-
sible, it is not an elegant and simple to use approach. The main problem
is that the FreeBSD ports system has not been designed with an upgrade
feature in mind. Thus almost all of the base pkg * tools need to be re-
placed and enhanced by wrapper tools, which means duplicating code and
making it hard for the user to grasp what he or she should actually use

UPGRADING PORTS AND PACKAGES 11

in order to get a functional ports and packages system. Another problem
with portupgrade is, that it is a port itself, and thus is not as thoroughly
maintained as the standard pkg * tools which are in the base system.

2.4.2 OpenBSD approach

The OpenBSD project is in the process of enhancing their ports framework
to provide the upgrade functionality in the base system for the 3.7 release.
Since one of the really complicated parts of upgrading software is to also
upgrade packages with all of their dependencies to other packages and to
account for shared libraries which many ports use, some new variables have
been introduced in order to specify which shared libraries a port needs.
This means that packages which are built from ports now, include all the
information needed for the upgrade process.

A new option -r has been introduced to pkg add to allow the replacement
of existing packages. The code tries to take every precaution to make sure
the update can proceed before removing the old package and adding the new
one, and it also handles shared libraries correctly.

pkg add is only able to upgrade and replace single packages, thus pkg update
will be introduced to the pkg * toolchain. pkg update will be able to per-
form global updates of the system:

• pkg update will be able to sort through individual replacement oper-
ations to find an ”optimal” order for replacing packages,

• pkg update will tell the user that he or she actually needs to replace
some packages and install some new ones in some rare cases and helps
them to do so.

• pkg update will also have some look up capabilities in order to figure
out what old package it replaces.

The big advantage of the OpenBSD approach is that the upgrade functionality
is implemented in the base ports system and not provided as an add-on
package. Thus the code goes through a constant and thorough audit process
and there is no need for wrapper tools which only add up to the overall
complexity of the ports system.

2.4.3 NetBSD approach

”Port” is the term used by the FreeBSD and OpenBSD community for what
the NetBSD community calls a package. In NetBSD terminology, the term

BSD PORTS SYSTEM ADVANTAGES 12

”port” refers to an architecture like i386, macppc or sparc64 et cetera.
The NetBSD package framework which is also known by the term pkgsrc,
includes the upgrade functionality of binary packages in the base system.
The pkg add command has an update switch which basically does the fol-
lowing:

• If the package that’s being installed is already installed, either in the
same or a different version, an update is performed. If the command
line switch is specified twice, then any dependent packages that are
too old will also be updated to fulfill the dependency.

The package framework also supports the update and replace targets. The
update target updates the installation of the current packages and all de-
pendent packages which are installed on the system. The replace target
updates the installation of the current package but does not replace depen-
dent packages.

2.5 BSD Ports System Advantages

By looking at the various concepts and approaches present in the BSD ports
system, its strengths and advantages when compared to other package man-
agement tools like RPM or dpkg, become obvious.

The BSD ports system was originally designed around the concept of building
software from source, with the ability to make and install binary packages as
an afterthought [2], while many other packaging systems like RPM or dpkg
and such were designed around the concept of installing a binary package,
with building from source as an afterthought.

So the big advantage of building from source is flexibility. While a binary
package ”just installs”, ports have been designed to cover the full range of
bits and pieces of installing software like encoding, tracking and installing
dependencies, packaging, installing and deinstalling software, applying plat-
form specific changes, compile time configuration options and much more.

Again, a RPM is just a binary package and in order to be able to automati-
cally resolve and install dependencies higher level tools are needed and since
it’s binary, one has to deal with library versioning conflicts, missing compile
time options, or any other of the limitations which occur when one does not
build the package on his or her own system.

13

Chapter 3

Port Browser

3.1 Graphical User Interface

The GUI of the PortBrowser has been designed to be as simple as possible.
The tree view on the left hand side represents the ports tree infrastructure.
Ports are listed based on the category they belong to. There are some cases
where more than one category is specified for a port, but since a port can
only reside in one directory in the actual ports tree, it will only be assigned
to one category in the the tree view.

Because of this representation of the ports tree, it is very easy to navigate
around, thus turning the process of searching, installing or deleting of various
ports in an easy task. This has actually been one of the main goals of this
project - providing a simple front end for frequent ports operations. In order
to get a better understanding of the functionality which is offered by the
PortBrowser, the next sections will describe the most important graphical
interfaces and their usage.

3.1.1 Port Description View

The Port Description View, as illustrated in figure 3.1, is based on a
mixture of information found in the pkg/DESCR file and the INDEX file, which
contains aggregated information about all ports. Basically the following port
specific values will be displayed:

• Port name combined with the version number.

• Comment used for the port.

GRAPHICAL USER INTERFACE 14

• Category the port belongs to. If a port may be part of multiple cate-
gories, only the first category will be displayed.

• Relative directory location in the ports tree where the port resides in.

• If a port is Flavored or Multipackaged the appropriate information is
displayed. There may be more variants of Flavors and Multi packages
present in the ports respective Makefile, but only those which are
present in the aggregated INDEX file will be displayed.

• The extended description which is found in pkg/DESCR is also dis-
played.

Figure 3.1: Port Browser - Port description view.

3.1.2 Port Dependency View

The Port Dependency View, as illustrated in figure 3.2, displays the possi-
ble port dependencies which are extracted from the INDEX file. The values
are split into the following dependency categories:

• Run Dependencies include a specification of ports this port needs in-
stalled to be functional.

GRAPHICAL USER INTERFACE 15

• Build Dependencies include a list of other ports the current port
needs to build correctly.

• Library Dependencies specify libraries this port depends upon.

Figure 3.2: Port Browser - Port dependency view.

3.1.3 Port Packing List View

The Port Packing List View, as illustrated in figure 3.3, displays all files
which are listed in pkg/PLIST and belong to a specific port like executables,
libraries, manual pages, header files, documentation et cetera. Note that
shared libraries are not yet displayed in this particular view, and thus the
file pkg/PFRAG.shared is not evaluated by the PortBrowser, although this
will be implemented in the next upcoming releases.

3.1.4 Port Search Window

The PortBrowser offers some basic search functionality. The search window,
as illustrated in figure 3.4, offers the user the possibility to search for phrases
in the following fields:

• Package Name Field

GRAPHICAL USER INTERFACE 16

Figure 3.3: Port Browser - Ports packing list.

• Comment Field

• Description Field

• Library-, Build- and Run-Dependency Field

• All of the above

If the phrase has been found, the corresponding entry in the ports tree
view is automatically selected. Support for regular expressions has not been
added yet, but is planned for the future. It is also not possible to search
for files or shared libraries in specific ports, but this will be supported in
upcoming versions.

Figure 3.4: Port Browser - Ports search window.

GRAPHICAL USER INTERFACE 17

3.1.5 Port Operation Progress Window

Whenever the user starts to install or delete ports or packages, a window
(see figure 3.5) which tracks the chosen process will pop up. The output of
each port or package operation is obtained from a pseudo tty where all the
necessary commands are executed. It is also possible to cancel the chosen
operation which will basically kill the install or delete process and may result
in an inconsistent or unclean state of the ports tree. The cancel process can
be compared to pressing CTRL+C in a terminal while the install or delete
process of a port or package is executing. After a port or package operation
completes, the ports tree view is updated depending on whether a port has
been installed or deleted.

Figure 3.5: Port Browser - Ports operation progress window.

IMPLEMENTATION 18

3.2 Implementation

This section gives an overview of some implementation details and describes
the rationale behind certain decisions. First of all, the reason for choosing
C as programming language should be explained. Even though there are
many high level languages like JAVA, C++ or C#, the choice has been made
in favor of the C programming language. Amongst many reasons for this
decision, the most important ones were portability, the availability of a
free compiler toolchain, and the availability of a multi-platform toolkit for
creating graphical user interfaces.

Another important premise was to use all the functionality which is provided
by the xBSD base system, and to only depend on a very minimal subset of
add on software which can be installed through the ports system itself. Thus
the PortBrowser only depends on one third party software package, namely
GTK+. All the other tools like a C compiler, lex1, yacc2 and the Make utility
are available with the BSD base system.

3.2.1 Class Hierarchy

The first prototypes of the PortBrowser used C structures to internally
represent ports with all of the information that belongs to them. Even
though this approach worked considerably well, another approach which
uses the GObject object oriented framework provided by the glib, has been
chosen. The glib is a general purpose utility library which includes support
routines for C such as lists, trees, hashes, memory allocation, and many other
things.

GObject, and its lower level type system GType, are used by GTK+ and most
GNOME3 libraries to provide:

• Object oriented C based APIs [3].

• Automatic transparent API bindings to other compiled or interpreted
languages.

The reason why GObject was chosen for the PortBrowser is mainly because
it provides an object oriented C based API and comes with many useful
functions which can be inherited and used from base objects such as GObject
itself. If not defined otherwise, GObject is the base class of every newly
created object in the GObject object oriented framework.

1lex - fast lexical analyzer generator.
2yacc - An LALR parser generator.
3GNOME - GNU Network Object Model Environment.

IMPLEMENTATION 19

Mainly functions for creating, unreferencing, setting and getting properties
of an object are widely used in the PortBrowser, and replace custom al-
location and de-allocation functions as well as self written access functions
to structure variables. Another powerful feature which GObject provides is
information hiding, which is very hard to do with C structures.

Figure 3.6: PortBrowser - Object Hierarchy.

The PortBrowser implements two classes, PkgObject and PkgQuery, which
are derived from GObject. Figure 3.6 shows a class diagram displaying
the most important functions provided by those two classes. Almost all of
the specific names of getter and setter functions have been left out, since
that would only cause confusion and bloat the diagram. Even though class
diagrams already give many clues regarding the purpose of classes, some
more information about the usage and purpose of these two classes will be
provided in the following sections.

IMPLEMENTATION 20

PkgQuery

The PkgQuery class holds all the information which is necessary in order
to execute search queries. It provides getter, setter and clear functions in
order to fill, extract, or clear the corresponding search phrases. There are
also functions which provide information about how many search phrases a
PkgQuery object includes.

PkgObject

The PkgObject class holds all the information about a port which gets
extracted from the aggregated INDEX file. It also provides functions for
managing double linked lists of PkgObjects. A search function which takes
a PkgQuery object and a PkgObject as a parameter is also implemented.
It returns the amount of successful hits in the PkgObject which meet the
specified query criteria in the PkgQuery object.

In order to account for installed packages, there are functions which de-
termine, the install status and modify a counter which keeps up with the
amount of installed packages on the system.

Since some information about a port like the PLIST, or the extended de-
scription is not available in the aggregated INDEX file, PkgObject provides
functions which transparently extract the necessary information out of the
corresponding files.

3.2.2 Data Structures

All PkgObjects are linked together into a double linked list which gets sorted
based on port categories and port names. Instead of using the glib double
linked list structures and functions, a set of standard macros which are
provided by the BSD base system are used. Since the C preprocessor expands
these macros into fast pointer operations, they are much faster than and
almost as easy to use as their glib counterparts.

The data structure behind the tree view is a GtkTreeStore. A GtkTreeStore
is a tree like data structure that can be used with the GtkTreeView4. This
data structure only holds information about the unique id of each port, the
category a port falls into, the port name and the install status of a port.

Since the directory tree organization of the ports system naturally resembles
a tree like data structure, it is planned to replace the double linked list which
holds all PkgObjects with a tree like data structure.

4GtkTreeStore - A widget for displaying both trees and lists.

IMPLEMENTATION 21

3.2.3 Parsing of Aggregated Ports Tree Information

At the current date, OpenBSD offers approximately 3.000 ports and FreeBSD
offers over 10.000 ports. Thus it is not feasible to scan the ports directory
tree for this large amount of ports in order to be able to display all of them.

Because of the vast amount of available ports, the most important informa-
tion about each port is aggregated in an INDEX file, which is usually located
in /usr/ports/INDEX. Basically the INDEX file consists of entries separated
by a ”|”, where one line represents the aggregated information of one port.
Parsing this information as efficient as possible is important, since the user
shouldn’t have to wait very long for the PortBrowser application to start
up.

The first prototypes of the PortBrowser came with a hand written parser
for the INDEX file. The first version of the hand written parser used many
high level functions provided by the glib library. All it did was to create
simple structures of parsed ports, and display them in a tree view. The
implementation was very basic but hard to read and modify.

The second version of the hand written parser only used libc functions,
and thus was independent of any third party framework. This version of
the parser was very fast, since a lot of the functionality was implemented
by using pointer arithmetic’s. Although this version of the parser did not
deal with all the special cases which arise on various BSD flavors, and only
generated simple data structures from the information it parsed, the draw-
backs from this approach were quite obvious. 350 lines of unreadable code
which was running very fast though. This was again not satisfying since
unreadable code is hard to port, debug, clean up, and generally something
that should be avoided.

The current state of the implementation uses lex and yacc in order to
parse the information in the INDEX file. Since the grammar specification for
yacc is very simple, only 24 lines of code are needed for it, it makes the
implementation of BSD specific port tree extensions like OpenBSDs Flavors
and Multi packages concept easier to handle. Also changes to the INDEX file
format can be adapted quickly and easily with this approach.

3.2.4 Safe Execution of Privileged Commands

Since many of the operations which the PortBrowser provides need ele-
vated privileges, a concept of safely executing privileged commands must
be established. The easiest approach would be to execute the PortBrowser
application with super user privileges, but in general it is not good to have
applications which require root privileges throughout their life cycle for

IMPLEMENTATION 22

various reasons:

• Application bugs may cause fatal consequences since the process has
super user privileges.

• Everyone who would like to use the application would need to know
the root password.

• There is no way to provide fine grained access controls.

• ...

The goal is to limit the risk of those extra privileges being compromised in
the event of an attack [7]. Thus the PortBrowser will refuse to start if it is
executed with super user privileges. Since the problem of safely executing
privileged commands is not PortBrowser specific, there are already various
applications available for UNIX which accomplish this task. Probably the
best known applications are su and sudo, which are the ones utilized by
PortBrowser:

• The su - substitute user - command is used to assume the login shell
of another user without logging out.

• The sudo - superuser do - command allows a permitted user to ex-
ecute a command as the superuser or another user, as specified in a
configuration file. If the invoking user is root or if the target user is
the same as the invoking user, no password is required. Otherwise,
sudo requires that users authenticate themselves with a password by
default. Once a user has been authenticated, a time stamp is updated
and the user may then use sudo without a password for a short period
of time.

The very first versions of PortBrowser only supported the su command.
But since it is necessary to know the root password in order to execute com-
mands with root privileges through su, and there is no real fine grained way
to define privileges, support for sudo has been added and can be activated
by the -s command line switch. Sudo definitely is the best solution since it
allows a system administrator to give certain users or groups of users the
ability to run some, or all commands as root or another user while logging
the commands and arguments.

It should be quite obvious now which tools the PortBrowser utilizes in
order to execute commands, but the way this is implemented is still unclear.
The next section deals with this topic by showing the basic concepts which
are necessary in order to achieve our goal of safely executing privileged
commands.

IMPLEMENTATION 23

Execution of su and sudo in Pseudo Terminals

Before we take a look at how things are implemented in the PortBrowser, a
general overview of pseudo terminals is given. The term pseudo terminal
implies that it looks like a terminal to an application program, but it’s not
a real terminal [6]. Figure 3.7 shows a typical arrangement of the processes
involved when a pseudo terminal is being used. The key points in this figure
are the following:

Figure 3.7: Typical arrangement of processes using a pseudo terminal.

1. Normally a process opens the pseudo terminal master and then calls
fork in order to create a new process (child process). The child estab-
lishes a new session, opens the corresponding pseudo terminal slave,
duplicates it to be standard input, standard output, and standard er-
ror, and then calls exec to execute a file. The pseudo terminal slave
becomes the controlling terminal for the child process.

2. It appears to the user process above the slave that its standard input,
standard output and standard error are a terminal device. It can issue
almost all terminal I/O functions on these descriptors.

IMPLEMENTATION 24

3. Anything written to the master appears as input to the slave and vice
versa. Indeed all the input to the slave comes from the user process
above the pseudo terminal master. This looks like a stream pipe but
with the terminal line discipline module above the slave there exist
additional capabilities over a plain pipe.

Since the concept of a pseudo terminal should be obvious by now, it is pos-
sible to take a look at how things are implemented in the PortBrowser.
In order to be able to execute a command in a pseudo-tty, the function
forkpty(), which combines the three functions openpty()5, fork() and
login tty()6 to create a new process operating in a pseudo-tty, must be
called. So after forkpty() has been called successfully, the child process
can execute a privileged command and the parent process set’s up the ap-
propriate file descriptors so that it can read the output of the child process
and provide input for the child process through the pseudo-terminal master.
In our case the only input the child process may ask for is a pass phrase,
since we only execute su or sudo within a pseudo-tty. The actual commands
which manipulate ports and packages are passed as parameters to sudo and
su.

In order to monitor the execution of ports and packages commands, it is only
necessary to read from the master stdin file descriptor which is connected
to the slave stdout file descriptor. In order to provide transparent access to
the output of the slave file descriptor, a thread safe non blocking function
that provides access to a buffer which stores a certain amount of output
produced by the slave, has been implemented. This function is mainly used
by the operation progress window (see figure 3.5) to track the output of an
executed operation and to display it to the user.

This concept of executing commands is really flexible since it doesn’t depend
on the underlying package management system. As long as that system
provides commands which enable us to manipulate packages and ports, it
is possible to port the PortBrowser to such a system. All that needs to
be changed in order to get the PortBrowser to interact with a different
package management system would be the commands which are passed as
parameters to sudo and su. This again drastically decreases porting efforts
to other ports or package management systems.

5openpty() - This function finds an available pseudo-tty and returns file descriptors for
the master and slave.

6login tty() - This function prepares for a login on a specified tty which may be a real
tty device, or the slave of a pseudo-tty.

IMPLEMENTATION 25

3.2.5 Graphical Programming with GTK+

GTK+ is a powerful and platform independent toolkit intended for creating
graphical user interfaces. It has initially been developed as a widget7 set for
the GIMP8 and has grown extensively ever since. Today it is being deployed
by a large number of applications such as the GNOME desktop project.

The following components which are plugged and used together in a very
modular fashion, make up what is referred to as the GTK+ toolkit:

• GTK+ - Provides a complete and object oriented hierarchy of widgets.

• GDK - GTK+ Drawing Kit. Thin layer between GTK+ and the windowing
system (e.g. X11) which handles the actual graphics drawing and event
handling.

• Pango - Powerful library for rendering internationalized texts.

• GdkPixbuf - Image loading library.

• ATK - Accessibility Toolkit library providing a set of interfaces for ac-
cessibility. By supporting the ATK interfaces, an application or toolkit
can be used with such tools as screen readers, magnifiers, and alter-
native input devices.

• GObject - Library and framework which provides object-oriented pro-
gramming for the C programming language.

• Glib - General purpose utility library which includes support routines
for C such as lists, trees, hashes, memory allocation, and many other
things.

This thesis will only deal with the GTK+ component, explaining its basics,
major concepts and advantages. But first of all, it is necessary to understand
the concept of widgets in GTK+.

Widget Concept

Widgets are like containers and can contain widgets on their part again.
Thus widgets are responsible for the graphical layout of a program [8]. The
most obvious container is definitely a window, which contains all widgets of
a program. There are of course other containers like Box - or Table widgets,

7widget - Graphical component, that a computer user interacts with, such as a window or
a text box.

8GIMP - GNU Image Manipulation Program.

IMPLEMENTATION 26

and again those widgets are able to include other widgets which are then
arranged together. So by boxing and packing widgets into each other, the
application or dialog window gets its specific shape. The process of putting
a widget into another widget is called packing, and a widget which has been
packed into another widget is called its child widget. See figure 3.8 which
displays a small part of the GTK+ class hierarchy.

Figure 3.8: Example of a small part of the GTK+ class hierarchy. Only very
few functions are displayed to avoid unnecessary complexity in the class
diagram.

GtkWidget, the base class of all visible control elements, offers a large
amount of methods, properties and signals. Functions for creating, destroy-
ing, activating, deactivating, hiding or showing a widget are only a few, out
of a vast variety. It is not the purpose of this thesis to provide a detailed
reference of GTK+ functions, thus the interested reader is advised to visit
http://www.gtk.org for further and more detailed documentation of the

IMPLEMENTATION 27

GTK+ API.

Finally an overview of most commonly used widgets which are available with
GTK+ should demonstrate the completeness of the toolkit:

• Windows - top level and dialog.

• Containers - vertical and horizontal.

• Buttons, Labels, ComboBoxes, Menus.

• ScrollBars, ProgressBars

• TreeViews, ListBoxes

• Panes - horizontal and vertical.

• Notebooks, Tabs

• TextViews, Tables

• ...

GTK+ Advantages

Even though some advantages of GTK+ have already been covered in previous
sections, it is necessary to complete them and present the rationale behind
the choice of GTK+ as the GUI toolkit for the PortBrowser:

• GTK+ provides a complete widget set.

• The UI is very scalable and fast since it is implemented in C.

• There is support for themes, thus the look of feel of GTK+ applications
can easily be changed at runtime.

• Stock widgets are easily extensible with custom widgets.

• Full internationalization is available.

• Used in a variety of products ranging from embedded applications to
a complete desktop environment like GNOME.

• Clean design following the MVC9 paradigm.

9MVC - Model View Controller. A software architecture that separates an application’s data
model, user interface, and control logic into three distinct components.

IMPLEMENTATION 28

While evaluating the appropriate GUI toolkit for this project, many of the
named factors played an important role. In spite of all these facts, the main
reason why GTK+ has been chosen for this project was the clean and easy to
use API which resembles a sophisticated design.

29

Chapter 4

Summary

This thesis presented various aspects and many details about the Port-
Browser project. The BSD ports system, which resembles the basic foun-
dation for the PortBrowser, as well as various BSD specific extensions and
limitations have been covered.

An introduction to the simple graphical user interface coupled with screen-
shots demonstrates which information is displayed and how the interface
should be used.

Various implementation details are covered in order to describe the most
important structures and concepts which have been incorporated into the
PortBrowser. Many design decisions have been presented and backed up
by supportive arguments in order to make them more transparent.

The practical part of this project, which consisted of shaping an initial
idea into a fully-fledged project followed by the actual implementation, was
accompanied with various positive but also some negative experiences and
aspects.

A negative aspect most certainly was the fact that no real software engi-
neering process took place at the beginning. There certainly were many
ideas, but there was no clear specification of what should be implemented
and what not. Even though it would have been hard to provide a halfway
accurate specification, because at the beginning of the project I was not re-
ally acquainted with the programming language, the BSD ports internals and
GTK+, it would have been enough to at least specify what the PortBrowser
should accomplish as far as functionality is concerned. Since there has been
no accurate specification, the implementation procedure was a little bit un-
systematic.

The eagerness to write secure code was most certainly very positive for

FUTURE WORK 30

the project, since it requires special care and a lot of research in order to
find out about secure state of the art implementation techniques for certain
problems. Producing prototypes during the initial phases of the project also
resulted in a better overall outcome of the project, because it was possible
to learn more about the programming language and the toolkits which have
been used during the prototyping phase.

Shortly after the first testing releases of the PortBrowser, a stable version
has been produced which fixed a couple of small bugs encountered on non
i386 architectures. Afterwards some porting efforts have been made in order
to support the FreeBSD ports system. These porting efforts have been quite
successful. Unfortunately there was not enough time to implement some
FreeBSD specific features which would have made the PortBrowser a really
handy tool for FreeBSD too.

After posting to the appropriate lists and informing the public1 about this
project, the PortBrowser got imported into the OpenBSD and FreeBSD ports
system and is now available with upcoming releases of those two BSD flavors.

4.1 Future Work

There are many improvement ideas for this project which will hopefully be
implemented soon. The goal of the ongoing project is to provide a useful tool
for frequent ports operations and the following future plans for improvement
should ensure that:

• Provide a more generic su and sudo wrapper with better error handling
capabilities.

• Replace the list structure which holds all PkgObjects with a tree struc-
ture. The main advantage of this solution is that deeper package hi-
erarchies can be mapped correctly.

• Improve the tree-view which displays all ports and make it possible to
sort it based on various categories.

• Make it possible to install or remove several ports at once by providing
the functionality to make multiple selections.

• Display all possible ports and flavors for a port by parsing the appro-
priate information in the Makefile.

• Constant code review and clean up is also a task which should occur
on a regular basis.

1OpenBSD Journal - http://www.undeadly.org/cgi?action=article&sid=20041107194608

31

List of Figures

3.1 Port Browser - Port description view. 14
3.2 Port Browser - Port dependency view. 15
3.3 Port Browser - Ports packing list. 16
3.4 Port Browser - Ports search window. 16
3.5 Port Browser - Ports operation progress window. 17
3.6 PortBrowser - Object Hierarchy. 19
3.7 Typical arrangement of processes using a pseudo terminal. . . 23
3.8 Example of a small part of the GTK+ class hierarchy. 26

32

Bibliography

[1] Espie, M. OpenBSD porting information - Important differences from
other BSD projects, 2005. http://www.openbsd.org/porting/diffs.html.

[2] Fuller, M. D. The Ports System, 2005. http://www.over-yonder.net/
∼fullermd/rants/bsd4linux/bsd4linux4.php.

[3] Lacage, M. The Glib Object system, 2004. http://www.le-hacker.org/
papers/gobject/.

[4] Lucas, M. BSD Ports Collection Basics, 2000. http://www.onlamp.com
/pub/a/bsd/2000/12/21/Big Scary Daemons.html.

[5] Lucas, M. Cleaning Up Ports, 2001. http://www.onlamp.com/
pub/a/bsd/2001/11/29/Big Scary Daemons.html.

[6] Stevens, W. R. Advanced Programming in the UNIX c©Environment.
Addison-Wesley, Indianapolis, 2004.

[7] Viega, J., and Messier, M. Secure Programming Cookbook for C and
C++. O’Reilly, California, 2003.

[8] Warkus, M. GNOME 2.0 - Das Entwicklerhandbuch. Galileo Comput-
ing, Bonn, 2002.

	Table of Contents
	Introduction
	Structure of this Paper
	UNIX Software Management Tools

	BSD Ports System
	BSD Ports Collection Basics
	BSD Ports Infrastructure
	Targets
	Flavors and Multi packages
	Port Flavors and Combinatorics

	Package Tools
	pkg_add
	pkg_info
	pkg_delete

	Upgrading Ports and Packages
	FreeBSD approach
	OpenBSD approach
	NetBSD approach

	BSD Ports System Advantages

	Port Browser
	Graphical User Interface
	Port Description View
	Port Dependency View
	Port Packing List View
	Port Search Window
	Port Operation Progress Window

	Implementation
	Class Hierarchy
	Data Structures
	Parsing of Aggregated Ports Tree Information
	Safe Execution of Privileged Commands
	Graphical Programming with GTK+

	Summary
	Future Work

	List of Figures
	Bibliography

