
Motivation
Security Solutions and Techniques

Summary

Integration of Security Measures and
Techniques in an Operating System

(considering OpenBSD as an example)

Igor Boehm

Institute for Information Processing and Microprocessor Technology
Johannes Kepler University Linz, Austria

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Outline

1 Motivation
The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

2 Security Solutions and Techniques
Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

Outline

1 Motivation
The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

2 Security Solutions and Techniques
Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

The Basic Problem Being Studied

The Clever Attacker:
. . . finds a bug
. . . knows how to craft an exploit
. . . the exploit grants the attacker an advantage
. . . the exploit is likely to work on many systems because of
the strict regularity of the system environment

Is there a way to solve this problem?

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

Outline

1 Motivation
The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

2 Security Solutions and Techniques
Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

Simplified Solution for the Basic Problem

1 Make the system environment much more hostile towards
exploitation.

2 Do not break behaviours programs depend on.
3 Try to change everything else which makes an exploit

author cry.
4 Be careful about the performance hit.
5 Do not break any standards (e.g. POSIX)!
6 There should be no impact on well behaving processes!

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

Simplified Solution for the Basic Problem

1 Make the system environment much more hostile towards
exploitation.

2 Do not break behaviours programs depend on.
3 Try to change everything else which makes an exploit

author cry.
4 Be careful about the performance hit.
5 Do not break any standards (e.g. POSIX)!
6 There should be no impact on well behaving processes!

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

Simplified Solution for the Basic Problem

1 Make the system environment much more hostile towards
exploitation.

2 Do not break behaviours programs depend on.
3 Try to change everything else which makes an exploit

author cry.
4 Be careful about the performance hit.
5 Do not break any standards (e.g. POSIX)!
6 There should be no impact on well behaving processes!

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

Simplified Solution for the Basic Problem

1 Make the system environment much more hostile towards
exploitation.

2 Do not break behaviours programs depend on.
3 Try to change everything else which makes an exploit

author cry.
4 Be careful about the performance hit.
5 Do not break any standards (e.g. POSIX)!
6 There should be no impact on well behaving processes!

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

Simplified Solution for the Basic Problem

1 Make the system environment much more hostile towards
exploitation.

2 Do not break behaviours programs depend on.
3 Try to change everything else which makes an exploit

author cry.
4 Be careful about the performance hit.
5 Do not break any standards (e.g. POSIX)!
6 There should be no impact on well behaving processes!

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

Simplified Solution for the Basic Problem

1 Make the system environment much more hostile towards
exploitation.

2 Do not break behaviours programs depend on.
3 Try to change everything else which makes an exploit

author cry.
4 Be careful about the performance hit.
5 Do not break any standards (e.g. POSIX)!
6 There should be no impact on well behaving processes!

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Outline

1 Motivation
The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

2 Security Solutions and Techniques
Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Limiting Risk with Privilege Separation

Various daemon and system processes run with extra
privileges.
Those privileges are needed throughout the life-cycle of
such processes for various tasks like:

allocation of a socket
reading and writing to and from certain files
adjusting the system time
. . .

The goal is to limit the risk of those extra privileges being
compromised in the event of an attack.
A way to solve this problem is to use privilege
separation.

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

The Concept of Privilege Separation

Set up two processes.
One process is solely
responsible for performing
all privileged operations,
and it does
absolutely nothing
else!
The second process is
responsible for performing
the remainder of the
program’s work.

Process

(privileged)

Request to perform

communicating
with unprivileged

child.

Responses

Parent Process

Child Process
(unprivileged)

privileged operations

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Privilege Separation Example
Privilege Separation Implemented in OpenNTPD (Network Time Protocol Daemon)

1 Initialisation Phase:
Setup a Unix domain socket pair.
Fork child process.

2 Privileged Parent (ntpd) - Small Proces:
Keep extra privileges.
Only perform little jobs that require privileges:

Correct the current system time by some offset.
Resolve hostnames.

3 Unprivileged Child (ntp engine) - Large Process:
Drop extra privileges in the child process.
Perform most tasks in the unprivileged child process:

Filter replies to increase accuracy.
Send queries to all peers.
Collapse the offsets learned from each peer into a single
median offset.

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Privilege Separation Example
Privilege Separation Implemented in OpenNTPD (Network Time Protocol Daemon)

1 Initialisation Phase:
Setup a Unix domain socket pair.
Fork child process.

2 Privileged Parent (ntpd) - Small Proces:
Keep extra privileges.
Only perform little jobs that require privileges:

Correct the current system time by some offset.
Resolve hostnames.

3 Unprivileged Child (ntp engine) - Large Process:
Drop extra privileges in the child process.
Perform most tasks in the unprivileged child process:

Filter replies to increase accuracy.
Send queries to all peers.
Collapse the offsets learned from each peer into a single
median offset.

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Privilege Separation Example
Privilege Separation Implemented in OpenNTPD (Network Time Protocol Daemon)

1 Initialisation Phase:
Setup a Unix domain socket pair.
Fork child process.

2 Privileged Parent (ntpd) - Small Proces:
Keep extra privileges.
Only perform little jobs that require privileges:

Correct the current system time by some offset.
Resolve hostnames.

3 Unprivileged Child (ntp engine) - Large Process:
Drop extra privileges in the child process.
Perform most tasks in the unprivileged child process:

Filter replies to increase accuracy.
Send queries to all peers.
Collapse the offsets learned from each peer into a single
median offset.

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Privilege Separation Example: OpenNTPD
Privilege Separation Implemented in OpenNTPD (Network Time Protocol Daemon)

fork
master
ntpd

root

ntp engine

jailed child

/var/empty _ntp:_ntp

IMSG_ADJTIME

IMSG_HOST_DNS

socketpair

ntp clients or peers

socket
UDP *:123

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Outline

1 Motivation
The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

2 Security Solutions and Techniques
Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

W^X - The Basics.

Looking at the Operating Systems address space reveals
that there is memory which is both writeable and
executable (permissions = W | X) where it does not
need to be!
Because of this memory permission mess, many bugs are
exploitable!
This permission problem can best be solved by a generic
policy for the whole address space with the following goals:

Each page may either be writeable or executable, but
not both unless the application requests it.
Purify page permissions so that each page only has the
minimum amount of permissions which are necessary!

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

W^X - The Mechanism.

The mechanism for an implementation of W^X depends on
the MMU (Memory Management Unit) Architecture:

A per page X bit is supported by: sparc, sparc64,
alpha, amd64, ia64 and hppa.
The i386 architecture has a code segment limit where
execution above a certain "line" does not work.
A per segment X bit is present for the powerpc.

In order to support W^X a few process address space
changes need to be done (the amount of changes depends
on the MMU).
We are going to look at architectures which support the per
page X bit and describe how the process address space has
to be rearranged (for architectures which lack the per page X bit, further information about how
W^X is implemented can be found in the paper at http://www.bytelabs.org/papers.html).

Igor Boehm Integration of Security Measures and Techniques in an OS

http://www.bytelabs.org/papers.html

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

W^X in Effect.
Example of Dynamic Library Mapping.

Note that "data" segments are
supposed to be only RW but
contain objects which are RWX.

Some objects are writeable
when they do not need to be.

Make a few things non
writeable and give some
objects their own pages in
order to achieve W^X.

Object descriptions:
.got: Global Offset Table
.plt: Procedure Linkage Table
.bss: Uninitialised data
.data: Initialised data
.text: Text or executable
instructions

W ^ Xstack segment RW−

sigtramp R−X

null page

text segment R−X

data segment RW−

bss segment RW−

heap

libc bss RW−

libc text R−X

libc data RW−

ld.so bss RW−

ld.so data RW−

ld.so text R−X

libc plt RWX

ld.so plt RWX

ld.so got RW−

libc got RW−

plt RWX

got RW−

libc bss RW−

libc got R−−

libc plt R−X

libc data RW−

libc text R−X

ld.so bss RW−

ld.so got R−−

ld.so plt R−X

bss segment RW−

got R−−

data segment RW−

text segment R−X

null page

plt R−X

ld.so text R−X

ld.so data RW−

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

SSP - Stack Smashing Protector.
Improving the state of the art in buffer overflow detection.

The stack smashing protector is a GCC (Gnu
Compiler Collection) extension for protecting applications from
stack-smashing attacks.
Protects applications written in C by automatically inserting
protection code for each function into an application at
compilation time.
Protection is realized by:

Buffer Overflow Detection:
Function Prologue stores a random value on the stack.
Function Epilogue aborts if value has changed.

Variable reordering feature to avoid the corruption of
pointers.

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

SSP - Stack Smashing Protector.
A typical Stack Frame after a Function is called.

Random Guard value is
inserted by function prologue

. . . and checked by function
epilogue

Reordering of arrays and
local variables in order to
avoid corruption of pointers.

There is nothing which breaks
as a result of this!

It benefits security by finding
bugs and making them
unexploitable at a very low cost.

Unsafe Stack

stack growth

buffer

return address

arguments

string growth

local variables

previous frame pointer
Frame pointer

Stack pointer

Frame pointer
return address

previous frame pointer

arrays

local variables
Stack pointer

GUARD
(random value)

(C)

(B)

(A)arguments
Safe Stack

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Outline

1 Motivation
The Basic Problem Being Studied
Preliminary Solution Ideas and Goals

2 Security Solutions and Techniques
Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Random Numbers.
A Very General Overview.

Generation of randomness with deterministic computers is
very hard!

Perfect randomness characterized by the uniform
distribution is very hard to produce - instead
pseudo-random generators are being used.

Pseudo-random number generators have the goal that their
output is computationally indistinguishable from the uniform
distribution, while their execution must be feasible.

Good random number generators depend on good sources of
randomness which are usually chosen according to the following
requirements:

they must be non-deterministic
they must be hard for an outside observer to measure

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Random Numbers.
Gathering Entropy and Environmental Noise.

The term strong source of randomness represents
a generator whose output is not really random, but
depends on so many entropy providing physical processes
that an attacker can not practically predict its output.
Examples of sources of randomness:

inter-keyboard timings
inter-interrupt timings
finishing time of disk requests
finishing time of net input
. . .

The measured values from these sources of randomness
are added to an entropy pool by a mixing function in
order to increase the pool’s randomness.

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Secure Software Design Techniques
Memory Protection Techniques
Relevance of Random Numbers for Security

Random Numbers.
Usage of Random Numbers.

The 32-Bit sequence number field in the TCP header, a value which starts with a
randomly generated arbitrary integer which then increments sequentially, is a
place where a very fast and good random number generator is needed.

The initialisation of volatile encryption keys requires a random number generator
with a strong source of randomness.

Since address space allocations and mappings are fairly predictable,
randomization of address space is introduced and it heavily relies on a fast
random number generator. This means that each time a program gets executed,
it will show different address space behaviour and minimize the risk of an exploit
which depends on the predictability of address space allocations.

The Guard value which has been introduced in the Stack Smashing Protector
also relies on a good and fast random number generator.

Swap file encryption as a solution to prevent confidential data from remaining on
a backing store relies on a fast random number generator.

. . .

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Summary

Security is like an arms race because the best attackers
will continue to search for flaws.

It is high time for defensive technologies which do not
break any well behaving processes and have a low or
non-existant performance hit.

A good combination and integration of such defensive
technologies and a proactive security approach, makes a
system really secure.

Security must be integrated into an Operating Systems
design and not sold as an add on in order to be effective!

Igor Boehm Integration of Security Measures and Techniques in an OS

Motivation
Security Solutions and Techniques

Summary

Thanks for your attention!

Igor Boehm Integration of Security Measures and Techniques in an OS

	Motivation
	The Basic Problem Being Studied
	Preliminary Solution Ideas and Goals

	Security Solutions and Techniques
	Secure Software Design Techniques
	Memory Protection Techniques
	Relevance of Random Numbers for Security

	Summary

