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Abstract

Building compiler back ends from declarative specifications that map tree
structured intermediate representations onto target machine code is the topic
of this thesis. Although many tools and approaches have been devised to
tackle the problem of automated code generation, there is still room for
improvement. In this context we present Hburg, an implementation of a
code generator generator that emits compiler back ends from concise tree
pattern specifications written in our code generator description language.
The language features attribute grammar style specifications and allows for
great flexibility with respect to the placement of semantic actions. Our main
contribution is to show that these language features can be integrated into
automatically generated code generators that perform optimal instruction
selection based on tree pattern matching combined with dynamic program-
ming. In order to substantiate claims about the usefulness of our language
we provide two complete examples that demonstrate how to specify code
generators for Risc and Cisc architectures.

Kurzfassung

Diese Diplomarbeit beschreibt Hburg, ein Werkzeug das aus einer Spezi-
fikation des abstrakten Syntaxbaums eines Programms und der Spezifika-
tion der gewünschten Zielmaschine automatisch einen Codegenerator für
diese Maschine erzeugt. Abbildungen zwischen abstrakten Syntaxbäumen
und einer Zielmaschine werden durch Baummuster definiert. Für diesen
Zweck haben wir eine deklarative Beschreibungssprache entwickelt, die es
ermöglicht den Baummustern Attribute beizugeben, wodurch diese gleich-
sam parametrisiert werden können. Darüber hinaus hat man die Möglichkeit
Baummuster an beliebigen Stellen mit semantischen Aktionen zu versehen.
Wir zeigen, dass diese Spracheigenschaften in solchen Codegeneratoren an-
wendbar sind, die auf der Technik der Baummustererkennung und dynami-
scher Programmierung basieren. Zwei Beispiele der Codegenerator Spezifika-
tionen für Risc und Cisc Zielmaschinen sollen die Mächtigkeit der entwick-
elten Sprache aufzeigen.
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— If we are certain that our job is to produce com-
pilers for a single architecture, there may be no ad-
vantage in using automatic methods to generate a
code generator from a machine description. [...] If, on
the other hand, we expect to be producing compilers
for several architectures, generating code generators
automatically from machine descriptions may be of
great value.

Steven S. Muchnick [20] 1
Introduction

This chapter gives a general introduction to the goals and main
contributions of this master thesis. Finally, the structure of
the thesis is outlined.

Tools automating the construction of code generators such as JBurg [16],
Beg [5], Twig [1], Gburg [7], and Burg [2] exist, but there is still room for
advances. The goal of this master thesis is to improve the state of the art
of automatic code generation by devising a powerful code generator descrip-
tion language together with a reference implementation of a code generator
generator. Our language consists of rewrite rules augmented with costs and
semantic actions. The resulting code generators perform optimal instruction
selection based on tree pattern matching and dynamic programming.

In this master thesis, we make the following contributions:

• We demonstrate that it is possible to use an attribute grammar for-
malism together with code generators based on tree pattern matching
and dynamic programming (Section 4.3.5).

• We show that our code generator description language offers more flex-
ibility with respect to the placement of semantic actions than the lan-
guages accepted by the previously mentioned code generator generators
(Section 4.2.2 and 4.3.4).

• We introduce a special language construct that captures the notion of
linked subtrees. It turns out that this construct is quite useful since
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linked subtrees modeling sequential statements can easily be processed
by our code generator description language (Section 4.1).

When compared to other code generator description languages, the over-
all structure of our language is similar. However, we believe that no other
language that yields code generators based on tree pattern matching and dy-
namic programming offers (1) support for attribute grammars, (2) patterns
that capture linked subtrees, (3) and such a degree of flexibility with respect
to the placement of semantic actions.

1.1 Structure of this Master Thesis

Chapter 2 of this thesis outlines the structure of a conventional compiler and
introduces the process of compilation as a sequence of transformations. It
establishes common terminology and introduces the problem of automated
code generation. The following Chapter 3 reviews the state of the art in au-
tomated code generation, outlining various approaches that have been taken
so far.

Our code generator description language together with fundamental al-
gorithms implemented in our code generator are described in Chapter 4.
Finally, Chapter 5 outlines the architecture of Hburg1, our code generator
generator implementation, followed by a description of how to integrate an
automatically constructed code generator into a compiler.

For compiler developers interested in using our code generator descrip-
tion language together with its reference implementation it should suffice to
consult Chapter 4 together with Appendix A as a language reference, and
sections 5.2 and 5.3 as a reference to our code generator generator implemen-
tation. Appendix B offers complete examples of code generator descriptions
for Risc and Cisc target architectures.

1Hburg - Haskell Bottom Up Rewrite Generator
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2
Background Information

This chapter presents the process of compilation as a sequence
of transformations. First, the structure of a typical compiler
is outlined, establishing common terminology. Then, the main
transformations a compiler performs in order to translate a
source language program into a target language program, are
identified. After demonstrating how some transformations oc-
curring in the compiler front end can be automated, the focus
is directed to the compiler back end, namely the automation
of instruction selection.

2.1 Overview of Compilation

To the end user a compiler should behave like a black box taking a computer
program in one language as its input, and producing a translated computer
program as its output. This chapter deals with the structure of the compiler
black box, its internals, and their interaction. Figure 2.1 depicts a typical
infrastructure found in most modern compilers:

• The front end of a compiler is responsible for understanding the syntax
and semantics of the source program. During this phase of compilation
it verifies the lexical and grammatical structure of the input. Con-
text sensitive analysis (CSA) statically verifies the correctness of the
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Figure 2.1: Structure of a typical compiler [3].

source program semantics (e.g. type inference, scope analysis). Ideally
this phase also aids the programer with helpful error messages during
program development.

• The middle part consists of a sequence of optimization transformations.
Optimization methods such as constant folding, strictness analysis, re-
dundancy elimination, scalar optimization and strength reduction can
be used.

• Finally the back end takes the optimized source program and produces a
target program. A target program can be anything between a high level
language and low level machine code, but since conventional compilers
target machine code, we will focus on the latter form.

The “Infrastructure” box at the bottom of Figure 2.1 highlights the im-
portance of choosing efficient data structures and automation tools since
those choices greatly impact the performance, resource usage, and complex-
ity of the compiler.

2.2 Transformation of Representations

In order to produce machine code from a high level program, each part of the
compiler operates and possibly modifies an intermediate representation (Ir)
of the source program. Both, transformations that occur during compilation,
and the representations they operate on, are the subject of the following
sections.
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2.2.1 From Input Language to Intermediate Represen-
tation

The front end maps a high level source language onto an Ir (sometimes called
an abstract syntax tree) by scanning input tokens and then parsing them in
order to recognize the language syntax. This transformation also records
information for later use during context sensitive analysis.

Sub

MulNum
5

Num
2

5 - 2 * 3

Num
3

Exp  : Exp '+' Term { Add $1 $3 }
     | Exp '-' Term { Sub $1 $3 }
     | Term         { Term $1 }

Term : Term '*' num { Mul $1 $3 }
     | Term '/' num { Div $1 $3 }
     | num          { Num $1 }

Input Language Parser Generator Description Language
Intermediate

Representation

Figure 2.2: Example demonstrating a transformation from input language to in-
termediate representation using the HAPPY1 parser generator.

Extensive study and research in the areas of scanning and parsing has
lead to the availability of efficient tools that automate most tasks of scanner
and parser construction for a wide variety of input grammars. So the com-
piler writer only needs to specify the syntax using a convenient specification
language, and provide semantic actions to be emitted upon the recognition
of syntactic phrases.

The example in Figure 2.2 demonstrates how an input language of arith-
metic expressions can be transformed into an abstract syntax tree inter-
mediate representation. The example utilizes the Happy1 parser generator
description language. Non terminals are specified with an initial upper case
letter, terminals are lowercase, and semantic actions are placed between curly
braces at the end of each production. Productions of the same non terminal
are separated by the pipe “|” symbol.

Type checking and context sensitive analysis is also performed during the
first transformation of representations. Some compilers preserve and main-
tain types throughout compilation (see Shao and Appel [26], and Tarditi et
al. [27]), thus later compilation phases like optimization and code generation
can benefit from the additional information. Maintaining type information

1Happy - a parser generator for Haskell http://www.haskell.org/happy/
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throughout each program transformation is also helpful during compiler de-
velopment. Peyton Jones and Santos [14] argue that checking types after
each transformation is “an outstandingly good way to detect incorrect trans-
formations”, making it easier to detect and pin point errors.

2.2.2 Intermediate Representation Transformations

The compiler optimization phase takes an Ir produced by the front end as its
input, and performs Ir to Ir transformations yielding an improved Ir after
each transformation. Improved in this context means that the transformed Ir
results in faster execution time, more compact code, or more power-efficient
code.

An optimizer can make several passes over an Ir transforming it into
more efficient data structures and gathering enough information in order to
perform certain types of optimizations.

Since we do not focus on compiler optimization this section is kept rather
short, and included for the sake of completeness. The interested reader may
like to consult Muchnick [20], Cooper and Torczon [3], as well as Peyton Jones
and Santos [14], for more information on compiler optimization techniques.

2.2.3 From Intermediate Representation to Target Code

Finally the compiler back end produces machine specific target code from
an optimized intermediate representation. Emitting target-specific machine
code implies selecting the right instructions implementing the given Ir op-
erations, choosing an execution order, as well as deciding which values can
safely reside in registers and which have to be put into memory locations. Re-
garding aspects of optimization, Peyton Jones and Santos [14] argue that this
last transformation of representations should only “include optimizations ...
if they cannot be done by a [intermediate to intermediate] transformation”.

Again there is room for automation during the instruction selection phase
denoted by the “Select” box in Figure 2.1. Given a tree-structured Ir, the
compiler writer needs to specify all possible Ir tree patterns using a con-
venient specification language, and provide semantic actions to be emitted
upon the recognition of those patterns. A code generator generator then
yields code that performs instruction selection given such a specification.

Suppose we want to generate code for a contrived and simplified RISC-
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Sub

MulNum
5

Num
2

Num
3

reg<.out Reg a.>
          (. a = getReg(); .) 
  = Mul (reg<.out b.>, reg<.out c.>)
          (. PutMul(a,b,c); .)
    :2
  | Sub (reg<.out b.>, reg<.out c.>)
          (. PutSub(a,b,c); .)
    :2
  | Num v (. PutLoad(a,v); .)
    :1
  .

Target LanguageCode Generator Description Language
Intermediate

Representation

loadi r1,5
loadi r2,2
loadi r3,3
mul   r4,r2,r3 
sub   r5,r1,r4

Figure 2.3: Example demonstrating a transformation from intermediate represen-
tation to target code using the Hburg2 code generator.

like architecture only capable of performing basic arithmetic operations with
values residing in registers, and the ability to load immediate values into
registers. The example in Figure 2.3 should give a taste of how a tree-
structured Ir can be transformed into such an architecture using Hburg’s2

code generator description language. Ir nodes are specified with upper case
letters, the values they produce are all lower case. Semantic actions are
placed between “(.” and “.)”, input and output attributes are specified
between “<.” and “.>”. Several Ir tree patterns may produce the same
value and the pipe “|” symbol separates such production patterns. Full
details of Hburg’s code generator description language and its semantics are
given in section 4.3.

2.3 Summary

A typical compiler consists of a front end recognizing the input language,
an optimizing middle part, and a code generating back end. Developing a
good optimizing compiler is a complex task but fortunately some compilation
phases, the most prominent being scanning and parsing, can be automated.

The focus of this thesis is the automation of instruction selection in the
compiler back end. For the compiler writer there are several benefits of au-
tomating the generation of code which performs instruction selection. Highly

2Hburg - Haskell Bottom Up Rewrite Generator
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repetitive code sequences and algorithms must not be implemented by hand
but are automatically generated. This leaves less room for errors and gives
the chance to focus on the essential parts of instruction selection, namely the
production of good target code.
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3
State of the Art in Code Generation

This chapter gives an account of the state of the art in auto-
mated code generation. First, the genesis of automated code
generation based on Lr parsing techniques is introduced. Then,
more recent approaches to optimal code generation based on
tree pattern matching combined with dynamic programming
are outlined and contrasted with each other. Finally, a code
generation approach based on finite-state machine theory is
presented. It is very efficient with respect to runtime and code
size but does not guarantee to produce optimal code due to its
greedy matching algorithm.

3.1 Overview

Easing the task of building a retargetable compiler by automating the gen-
eration of code, has been a goal since the early history of compilers. Proeb-
sting [24], and Aho, Ghanapathi and Tjiang [1] give a historical account
about the various approaches that have been devised in order to deal with
the problem of automatic code generation.

While code generators use different instruction selection algorithms, their
specifications are quite similar and typically consist of tree rewrite rules that
associate a tree pattern with every instruction of the target machine. The
patterns consist of operators denoting the operators of the Ir nodes, and
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stmt = Asgn ( mem m, reg a ) ( . put(MOV,m,a); . ) : 3
| Asgn ( mem m, imm i ) ( . put(MOV,m,i); . ) : 2 .

imm = Cnst c ( . newImm(c); . ) : 0 .
reg = Add op ( reg a , reg b) ( . put(op,a,b); . ) : 2

| Add op ( reg a , imm i ) ( . put(op,a,i); . ) : 1
| Add op ( reg a , mem m) ( . put(op,a,m); . ) : 3
| Div op ( reg a , imm i ) ( . put(op,a,i); . ) : 1
| Div op ( reg a , reg b) ( . put(op,a,m); . ) : 2 .

mem = Var v ( . newVar(v); . ) : 2
| Add op ( mem m, imm i ) ( . put(op,m,i); . ) : 2
| Add op ( mem m, reg a ) ( . put(op,m,a); . ) : 3 .

Listing 3.1: Cisc Code generator specification example.

operands denoting the storage classes of operands on the target machine (e.g.
immediate, register, memory). Every pattern is associated with a semantic
action that is executed when this pattern is selected as well as with costs
that this pattern contributes to the overall costs of the generated code.

The goal is to cover the Ir tree with the available patterns in such a way
that the overall costs become minimal. When the Ir tree has been covered,
the semantic actions of the selected patterns are executed in a top-down way
generating the corresponding instructions.

Listing 3.1 provides a sample grammar specification with 11 rewrite rules
(two for stmt, one for imm, five for reg, and three for mem). Non terminals
denote storage classes. They are written in lower case and appear on the
left-hand side of rules. Terminals denote operators. They are written in
upper case and represent Ir nodes, also referred to as Ir language operators.
There are two types of rewrite rules:

• Base rules include a terminal symbol on the right hand side of rules.

• Chain rules derive one non terminal from another.

Costs associated with rewrite rules appear after a colon although not all code
generator systems require cost annotations. Semantic actions are placed
between (. and .). Bindings to terminals and non terminals that can be
referred to within semantic actions are underlined.

The following sections highlight the key ideas and insights behind each
code generator generator approach. We will focus on optimal code generation
for irregular architectures using non-exhaustive algorithms.
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3.2 Syntax Directed Code Generation

One of the earliest code generation methods based on Lr(1) (Left-to-right
Right-canonical-derivation) parsing was developed by Glanville [10], and Gra-
ham and Glanville [11]. This approach operates on a low-level linearized Ir
in polish-prefix form. Possible Ir patterns are captured by rules similar to
those in a context-free grammar. When a rule matches, its corresponding
semantic action implementing the appropriate machine code sequence is ex-
ecuted. So the Ir is covered by target code instructions once a parse of its
linearized polish-prefix form has been found.

According to Graham and Glanville [11] machine description grammars
tend to be ambiguous since most operators can access their operands in a
variety of ways. An example are operators that accept their operands only
from a specific subrange of registers (e.g. Ia-32 Div instruction). Such
semantic information needs to be encoded syntactically and may result in
ambiguities leading to shift-reduce and reduce-reduce conflicts during Lr
parsing. Shift-reduce conflicts are resolved in favor of a shift action, and
reduce-reduce conflicts are resolved in favor of a reduction by the rule with
the longest right hand side. This conflict resolution strategy has the effect
of choosing production rules with long right-hand sides, thus reducing the
amount of grammatical reductions, and consequently the amount of emitted
machine instructions.

Ganapathi [8], and Ganapathi and Fischer [9] extended the Graham-
Glanville approach by using an attribute grammar that allows to specify
predicates to be used in ambiguous situations. This results in grammar pro-
ductions that specify the general form of machine instructions, and semantic
attributes and predicates that specify architectural restrictions.

3.3 Tree Pattern Matching Combined with
Dynamic Programming

Another approach to optimal code generation combines tree pattern match-
ing with dynamic programming. This strategy implies a tree-structured Ir
which is mapped onto target machine code by specifying tree patterns as
rewrite rules annotated with costs. The ultimate goal of the tree pattern
matcher is to cover the Ir tree with tree patterns in such a way that the
overall costs become minimal. In other words, a minimum-cost rewrite rule
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cover for the Ir tree must be identified by the matcher.

What we have not discussed yet is the strategy used by the matcher to
find rewrite sequences for a given Ir. Horspool and Scheunemann [12] give
examples demonstrating the size of the search space a matching algorithm
has to consider in order to select an optimal rewrite sequence, rendering an
exhaustive approach unpractical. Instead, the dynamic programming algo-
rithm outlined by Aho, Ganapathi and Tjiang [1] describes a non-exhaustive
approach to find an optimal rewrite sequence for a given Ir. The basic idea
is to recursively partition the problem of generating an optimal rewrite se-
quence for an expression tree T, into subproblems of finding optimal rewrite
sequences for the subtrees of T. This dynamic programming algorithm is
integrated with the tree-matching process.

The following sections describe three approaches to tree pattern matching
combined with dynamic programming. The first delays dynamic program-
ming until the code generation phase during compiling, whereas the second
moves the dynamic programming part to code generator generator construc-
tion time by building a bottom up rewrite system automaton. Both, the first
and the second approach need two passes over the Ir, one bottom-up pass
to identify the optimal rewrite sequence by labeling the tree with dynamic
programming information, and a top down traversal that emits optimal tar-
get code based on the decisions made during the previous pass. The third
approach uses only a single pass and does not need an explicit Ir to emit
target code at the expense of only being able to process a proper subset of
grammars that two-pass systems can handle.

3.3.1 Dynamic Programming at Compile Time

This section describes tree pattern matching code generator generators which
apply dynamic programming at compile time, during instruction selection.
Fraser, Hanson and Proebsting [6] argue that this approach produces code
generators that “are fast, compact, and easy to understand”.

Given a cost-augmented tree pattern specification with semantic actions
implementing the tree patterns, two passes over the Ir are needed to produce
optimal target code. The first bottom-up left-to-right pass labels the Ir
tree with tree patterns that cover it with minimum cost. The minimum-
cost cover is calculated explicitly during instruction selection using dynamic
programming. The second top-down pass executes the semantic actions that
are associated with the selected tree patterns.
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Since our prototype Hburg code generator generator implementation is
based on this approach, a detailed description of the fundamental concepts
and algorithms is described in chapters 4 and 5. Horspool and Scheunemann
[12] provide a good overview of the dynamic programming approach used at
compile time and give a comparison to the Graham-Glanville code generation
approach. Fraser, Hanson and Proebsting [6] give a good outline on how to
construct a code generator which uses dynamic programming at compile time.

3.3.2 Dynamic Programming at Compile-Compile Time

Pelegri-Llopart [21], the originator of bottom-up rewrite system (Burs) the-
ory, was the first to recognize that dynamic programming could be done prior
to instruction selection at compile-compile time, namely during code gener-
ator construction. Code generators based on Burs theory are significantly
faster than other approaches that manipulate costs explicitly during the in-
struction selection phase of a compiler. This is possible because all dynamic
programming is done when the Burs automaton is built.

The Burs automaton which finds the optimal rewrite sequence for an
Ir is a simple state-transition machine that given the operator at a node
and the states of its children, determines the optimal rewrite sequence via
a table lookup. So the first bottom-up traversal encodes all optimal rewrite
sequences based on the Burs automaton built during compile-compile time.
The second top-down pass uses the selected rewrite sequences to emit target
code.

Generating an efficient Burs automaton is the main difficulty which arises
when trying to implement a Burs code generator. Since all dynamic pro-
gramming decisions are done at compile-compile time, state transitions and
table lookups must be fast. For typical machine architectures it is inefficient
to naively generate Burs states and state transition tables due to large table
sizes. Proebsting [24] [23] demonstrates how to reduce table sizes by apply-
ing various optimizations, thus increasing the efficiency of Burs-style code
generator generators.

3.3.3 Single-Pass Optimal Tree Pattern Matching

The previous two approaches defer emission of optimal target code until a
minimum-cost cover of the complete Ir has been found. Proebsting [25]
devises a code generation system which is able to parse an Ir and emit
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optimal code in a single bottom-up pass. The tree pattern grammars that
can be processed by this approach are a proper subset of those that the
previously described two pass systems can handle. The most striking aspect
of this approach is that it obviates the need for an explicit Ir altogether
because there is no reason to retain a complete Ir if the code generator can
emit code in a single pass.

The key idea behind this approach is that for some Ir nodes there exists
only one rewrite rule, also referred to as a base rule. Such base rules can
be applied right away. For all other Ir nodes where the matcher cannot
determine the optimal rewrite rule immediately, it consults a small buffering
stack that is used to record previously seen operations for such deferred
matches. So there is no need to explicitly allocate an Ir but some amount
of bookkeeping must be performed in case an optimal decision at an Ir node
can not be made and must be delayed.

Despite the fact that a single-pass system can only parse a proper sub-
set of two-pass system grammars, Proebsting [25] argues that “most useful
grammars, including those describing the SPARC, the MIPS R3000, and the
x86 architectures, fall within this subset”.

3.4 Finite-State Code Generation

For compilation environments where code generator speed and size are of ut-
most importance, Fraser [7] devised a finite-state machine pattern matching
approach yielding tiny and fast code generators.

This approach works on Ir’s in postfix representation and uses greedy
pattern matching instead of dynamic programming and unrestricted tree-
matching. The matching algorithm makes a locally optimum choice at each
stage with the hope of finding the global optimum. Base rules are matched
immediately (greedy matching) and the application of chain rules is deferred
until the next instruction is examined. This strategy can be encoded as a
finite-state machine where the current operator is the input symbol and the
last non terminal is the state. As a result this method does not guarantee to
find an optimal global solution because that would imply looking arbitrarily
far ahead.

Because the finite-state approach has to make decisions without complete
information, this can lead to the generation of sub-optimal code for target
architectures with redundant operations and complex addressing modes (e.g.
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Ia-32). Given a target architecture that eliminates redundant operations
and provides a uniform addressing mode, the finite-state code generation
approach fares quite well. The Lean Virtual Machine (Lvm) devised by Fraser
[7] is a stack based machine designed for efficient translation of machine
code by eliminating redundant operations, and providing only one indirect
addressing mode where load and store operations find their target addresses
on the evaluation stack. Experimental results showed that a finite-state
code generator produced from a specification that maps stack-based virtual
machine Ir to x86 code, outperforms the previously mentioned approaches
with respect to code generation throughput and code generator size.

3.5 Summary

Automatic code generation had its genesis based on ideas taken from Lr pars-
ing (Graham and Glanville [11]). More sophisticated subsequent approaches
used tree pattern matching and dynamic programming to produce optimal
code generators (Horspool and Scheunemann [12], Fraser, Hanson and Proeb-
sting [6], Proebsting [25] [24] [23]). For environments where code generator
speed and size are of greater importance than code quality, a finite-state code
generation approach was shown to yield promising results (Fraser [7]).

While the specification languages accepted by code generator generators
are very similar from a semantic point of view, differing mostly in the choice
of syntax, the strategies used for matching instructions and emitting code
are quite different. Solutions utilizing dynamic programming guarantee to
emit optimal instructions at the expense of producing fast but large, or small
but slower code generators. The finite-state approach produces tiny and fast
code generators from restricted tree grammars but does not guarantee to
produce optimal instruction sequences due to greedy instruction matching.

We implemented our prototype based on ideas presented by Fraser [6], ap-
plying tree pattern matching combined with dynamic programming at com-
pile time. The produced code generator is smaller, easier to debug, but slower
than a table driven Burs approach.
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4
The Problem of Effective Tree Pattern

Matching Combined with Dynamic
Programming

This chapter describes fundamental algorithms implemented
in our code generator generator and introduces our code gen-
erator description language. First, limitations in other code
generator description languages are identified followed by out-
lining our solutions to those limitations. Next, an optimal
instruction selection algorithm based on tree pattern match-
ing and dynamic programming is illustrated. Finally, our code
generator description language is introduced together with sev-
eral concise examples.

Advances in compiler construction have shown that many stages can be
automated during the design and implementation process of a compiler. The
most prominent areas being lexical analysis and parsing where a great deal of
research resulted in the availability of tools which generate lexical analyzers
and parsers automatically from concise grammar specifications.

We focus on the task of automatically generating code generators from a
specification that maps an Ir tree onto some target machine instruction set.
Figure 4.1 outlines how a code generator is produced from such a specifica-
tion. The emitted code generator is plugged into a compiler back end and
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performs optimal instruction selection by covering an Ir tree with tree pat-
terns that denote target instructions. Each tree pattern is associated with
a cost that contributes to the overall costs of generated code. Optimality
is achieved by selecting patterns in such way that the overall costs become
minimal.
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Figure 4.1: Automatic generation of a compiler back end.

Research efforts in the area of automating the construction of code gen-
erators is outlined in Chapter 3. Although many novel ideas and approaches
have been devised during those efforts, the grammar specification languages
and code generator generators are not yet as sophisticated as their lexical
analyzers and parser generator counterparts.

4.1 Motivation

Code generator specification languages for tree pattern matching systems
with dynamic programming can certainly be improved with respect to the
following limitations:
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1. Limitation: All of the languages we have encountered so far only pro-
vide means to emit semantic actions after a complete tree pattern has
been processed. Given the rewrite rule “Asgn (mem m, reg a)” as
illustrated in Listing 3.1, it is not possible to add a semantic action be-
fore or indeed between the “(mem m, reg a)” sub-pattern. This would
be useful in situations where jump labels need to be computed, or a
register allocator must be consulted before sub-patterns are processed.

2. Limitation: There is also no easy way to pass values to and from
non terminals produced by rewrite rules (see chapter 3 for a descrip-
tion of basic tree pattern matching grammar components). Again, this
would for example be useful to pass jump labels or register ranges to
productions.

3. Limitation: Translating high level imperative languages to tree-struc-
tured intermediate representations gives rise to the question of how
to model sequential statements efficiently in a tree. In his technical
report about OP2, a portable Oberon compiler, Crelier [4] argues that
it would be expensive to insert dummy nodes linking subtrees in order
to represent sequential constructs. Therefore he suggests the usage
of an additional link field in the node data structure as outlined in
Figure 4.2. Again, we have not encountered a code generator generator
which would support specifications of such intermediate representations
on a syntactic and semantic level.

Our aim was to design a powerful tree pattern matching specification
language with simplicity and easy readability in mind. We also wanted to
address the previously mentioned limitations by allowing arbitrary placement
of semantic actions within productions, and by supporting intermediate rep-
resentations linking sequences of subtrees as illustrated in Figure 4.2. Thus
solving the shortcomings mentioned in limitation 1 and 3.

public class Node {

   Node left;

   Node right;

   Node link;

   ...

}

Figure 4.2: Tree-structured intermediate representation with links to subtrees.

We have designed our language to accept attribute grammar style spec-
ifications since they provide an elegant solution to the problem of passing
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values to and from productions as mentioned in limitation 2. The syntax
used for specifying formal attributes is based on Mössenböck’s [19] Cocol/R1

parser generator specification language. Attribute grammars, first invented
by Knuth [18], have been previously applied to the code generator gener-
ator domain. Ganapathi and Fischer [9] used the formalism to improve
the Graham-Glanville code generator generator based on Lr parsing (see
3.2). Our specification language and prototype implementation successfully
demonstrates that the attribute grammar formalism can also be applied to
code generator generators based on tree pattern matching and dynamic pro-
gramming. Before presenting our code generator description language, we
focus on fundamental algorithms for optimal instruction selection that are
applied in our code generator.

4.2 Fundamental Algorithms

Our code generation approach is based on tree pattern matching with dy-
namic programming applied at compile time as outlined in Section 3.3.1.
Essentially it resembles a two-pass system that optimally covers an Ir tree
with cost-augmented tree patterns in the first bottom-up pass, and executes
semantic actions associated with the selected patterns in the second top-down
pass. Optimally covering an Ir with tree patterns corresponds to finding an
optimal instruction sequence that implements it. The task of efficiently cal-
culating an optimal cover given ambiguous machine grammar definitions is
the topic of the next section.

4.2.1 Calculating Optimal Instruction Sequence

An example inspired by Cooper and Torczon [3] should help to understand
the problem of efficient optimal instruction selection. Figure 4.3 illustrates
an intermediate representation for the assignment statement x := y − 2 ∗ 3.
Subtrees that calculate variable locations are highlighted and point to the
corresponding variable. A table listing a subset of rewrite rules and their costs
for the given Ir is depicted to the right-hand side of Figure 4.3. A rewrite rule
consists of a non terminal derived by a tree pattern (non terminals denote
immediate, register, and memory addressing modes in our example). Note
that the specification of semantic actions has been omitted since they are
not needed to illustrate the problem.

1Cocol/R - Compiler compiler language generating recursive descent parsers.
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x := y - 2 * 3

 1 stmt = ASGN(mem,reg)    :3
 2      | ASGN(mem,imm)    :1. 
 3  imm = CNST             :0.
 4  reg = imm              :1 
 5      | VAL              :0 
 6      | ADD(reg,reg)     :2 
 7      | ADD(reg,imm)     :1
 8      | SUB(reg,reg)     :2 
 9      | SUB(reg,imm)     :1
10      | MUL(reg,reg)     :2 
11      | MUL(reg,imm)     :1.
12  mem = REF(ADD(reg,reg)):3 
13      | REF(ADD(reg,imm)):2 
14      | ADD(mem,reg)     :3 
15      | ADD(mem,imm)     :2
16      | SUB(mem,reg)     :3 
          ...

Rewrite Rules          Costs
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Figure 4.3: Tree-structured intermediate representation for an assignment instruc-
tion with corresponding rewrite rules.

The subtree REG(ADD(VAL FP, CNST 4)) that calculates the address of vari-
able x in Figure 4.3 is the one we are concerned about. By looking at the
rewrite rules we see that it is possible to cover the VAL FP node with rule
number 5, namely reg = VAL. Then we can apply rewrite rule 3 to cover
the node CNST 4. As a consequence of applying the previous rewrite rules,
rule number 13, namely reg = REF(ADD(reg, imm), matches the complete
resulting subtree.

The diligent reader might have noticed that this is not the only sequence
of rewrite rules that can be applied. Figure 4.4 shows that there exists
another rewrite rule sequence that covers the subtree. The first sequence
<5,3,13> has a cost of two, and the second sequence <5,3,4,12> has a
cost of four. Real world grammar specifications usually include many more
potential rewrite rule sequences than this small example. Thus an efficient
algorithm for finding optimal sequences of rewrite rules is needed.

Our solution to this problem is based on dynamic programming. Dy-
namic programming recursively subdivides an overall problem into a number
of subproblems that can be solved individually. The solutions to subprob-
lems are constructed incrementally from those of smaller subproblems and
are cached to avoid recomputation. In our case the overall problem of gener-
ating an optimal sequence of rewrite rules for a tree-structured intermediate



22 Tree Pattern Matching with Dynamic Programming

+
5

13

<5,3,13>

VAL

FP

CNST

4

+

12

<5,3,4,12>

VAL

FP

CNST

4

3

REF REF

35

4

Figure 4.4: Possible rewrite rule matches covering an intermediate representation.

representation T, is subdivided into subproblems of finding optimal rewrite
rules for the subtrees of T. A rewrite rule R is recorded at the root node of a
subtree T if and only if no cheaper rule that derives the same non terminal
exists.

Figure 4.5 demonstrates how an Ir tree is optimally covered with tree
patterns using dynamic programming. The labeling process works bottom-
up. In the first step nodes VAL and CNST are labeled. Rewrite rule 5 matches
node VAL and is recorded in a table that encodes all components of a rule,
namely its number, its cost, and the non terminal it derives (i.e. the address-
ing mode). Pattern number 3 matches node CNST and is recorded as well.
Note that since CNST derives an imm non terminal now, rule number 4 also
matches. So a matching pattern can trigger a chain of subsequent matches.

In the second step node ADD is labeled. The first matching rewrite rule
for ADD is rule 6. It demands that the left and right child nodes of ADD derive
reg non terminals. The costs of the required non terminals derived by the
left and right subtrees and the cost of rule 6, contribute to the overall costs
resulting from matching rule 6 for ADD. Thus rule 6 together with its overall
costs is recorded for ADD. But in the third step it turns out that another
rule, namely rule 7 also matches ADD. Rule 7 now overwrites rule 6 in the
table for ADD since its overall costs are lower than those for rule 6. In other
words matching rule 7 is cheaper than matching rule 6. Since no further
rules match ADD, we can proceed to node REF. The procedure for selecting an
optimal pattern for REF is not outlined any further because it is the same as
for steps two and three.

The procedure of finding a minimum-cost Ir tree cover was given infor-
mally. Section 5.1.3 presents a formal algorithm for this procedure as it is
implemented in our code generator generator.
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Figure 4.5: Bottom-up optimal instruction selection using dynamic programming.

4.2.2 Emitting Optimal Instruction Sequence

Once the first bottom-up pass of the intermediate representation is complete,
yielding an optimal rule rewrite sequence as its result, semantic actions asso-
ciated with rewrite rules can be emitted. Because the tree is traversed top-
down during this phase, semantic actions denoted by sn, may be included
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anywhere within rewrite rules as the following example demonstrates:

goal = s1 assign s2 (4.1)

assign = s1 ASGN s2 (s3 reg s4, s5 reg s6) (4.2)

reg = s1 REF s2 (s3 ADD s4( s5 reg s6, s7 reg s8)s9)s10 (4.3)

The semantics of the previous example with respect to emitting semantic
actions, resemble those of the recursive descent parser devised by Mössenböck
[19]. As soon as a subtree that matches a pattern given in the previous
example is reached, the processing proceeds as follows depending on the
rewrite rule type:

1. Base Rule: Rules 4.2 and 4.3 are base rules. Base rules consist of
operators (terminals) and operands (non terminals). First the semantic
actions just before and after the operator are emitted. In our case
that would be s1 for the REF operator. Parenthesis indicate that an
operator has child nodes (operands), as is the case for REF, ASGN,
and ADD. Prior to recursing down to process a child node terminal or
non terminal, semantic actions defined before the respective terminal
or non terminal are emitted (i.e. before processing ADDs second child
node reg, s7 is emitted). After returning from the recursive call that was
responsible for processing ADDs second child node reg, the following
semantic action s8 is emitted.

2. Chain Rule: Rule 4.1 represents a chain rule. A chain rule is a rule
whose pattern is another non terminal (operand). Again the seman-
tic action s1 in rule 4.1 is emitted before processing the non terminal
assign, followed by the emission of the subsequent semantic action s2.

4.3 Code Generation Description Language

The following sections describe the language we have devised in order to
specify mappings from tree-structured intermediate representations to target
machine code. Many syntactic constructs were inspired by Mössenböck’s [19]
parser generator description language Cocol/R. First we outline the overall
structure of our language, followed by definitions of core language constructs
together with concise examples. Complete examples as well as a precise
language specification in Ebnf2 [28] are available in the appendix.

2Ebnf - Extended Backus Naur Form
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4.3.1 General Structure

Before introducing our code generator description language we have to define
its basic elements:

• Terminals, also referred to as operators, are upper case.

• Non terminals, also referred to as operands, are lower case.

• Tree patterns define possible substitutions of a non terminal sym-
bol and are separated by a “|” pipe character.

• Semantic actions are placed between (. and .), denoting a piece of
code written in the target language of the code generator.

• Costs are specified after a colon at the end of each tree pattern. Costs
can be either constants, or arbitrary expressions written in the target
language.

• The combination of a tree pattern, its cost, and the non terminal it
derives is called a rewrite rule.

1 generator -- include, import statements
2 ( . . . . . )
3 declarations -- global variables and functions
4 ( . . . . . )
5 operators -- also referred to as node kinds
6 NUM( . . . . . ) , ASGN( . . . . . ) , ADD( . . . . . ) , SUB( . . . . . )
7 rules -- rewrite rules
8 stmts = stmt [ stmts ] : 0 . -- start rule
9 stmt = ASGN (reg ,NUM) ( . . . . . ) : 1

10 | ASGN (reg , reg ) ( . . . . . ) : 2 .
11 reg = NUM ( . . . . . ) : 1
12 | ADD (reg , reg ) ( . . . . . ) : 2
13 | SUB (reg , reg ) ( . . . . . ) : 2 .
14 end

Listing 4.1: General code generator description language structure.

A code generator specification as outlined in Listing 4.1, has the following
structure:

1. generator: The generator section is used to import packages (in
Java), namespaces (in C#), modules (in Haskell), or header files (in
C), enclosed within (. and .).
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2. declarations: Arbitrary fields, variables, functions, and methods can
be declared within (. and .) in the declarations section. All decla-
rations are within the scope of semantic actions specified in the rules
section.

3. operators: Operators are capitalized and designate the kinds of valid
nodes that make up a tree-structured intermediate representation. All
operators specified within this section comprise the set of valid termi-
nals used within tree patterns of rewrite rules.

Operator identifiers must not always correspond with node kind identi-
fiers used in the target compiler. In such a case it is possible to specify
a mapping from operator identifiers used in the code generator specifi-
cation to identifiers used by the target compiler (i.e. ADD(.109.) maps
ADD to its numeric representation 109).

4. rules: The rules section contains rewrite rules capturing the structure
of possible tree patterns. A detailed description of rewrite rules is given
in the following section.

4.3.2 Rewrite Rules

A rewrite rule specifies one or more tree patterns of an intermediate rep-
resentation. It consists of a left-hand side and a right-hand side which are
separated by an equal sign. The right-hand side contains tree patterns in fully
parenthesized prefix form, and the left-hand side specifies a non terminal that
represents the subtree matched by the right-hand side. Non terminals can
in turn be used as operands in tree patterns, and usually represent storage
classes or addressing modes provided by the target architecture.

The first rewrite rule defined in the rules section is the start rule. It
must match the root node of a tree-structured intermediate representation.
All subsequent rewrite rules can be specified in any order. Each rewrite rule
is defined in terms of at least one tree pattern. Tree patterns may be given
in any order, and every tree pattern must be augmented with its cost.

Tree patterns can also match linked chains of subtrees as Line 8 in List-
ing 4.1 demonstrates. The example shows how a chain of stmts subtrees can
be matched by the rule stmts = stmt [ stmts ], where [ and ] denote that
the non terminal stmts is optional. Section 4.1 and Figure 4.2 introduce the
concept of linked subtrees in tree-structured intermediate representations.
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4.3.3 Tree Pattern Costs

Costs are evaluated during the first bottom-up pass of the intermediate rep-
resentation and every tree pattern must be associated with its cost.

Costs need not always be constant. It is possible to define costs in terms
of arbitrary expressions written in the target language wrapped with (. and
.). Such expressions must evaluate to integer numbers. Furthermore only
variables and functions defined in the declarations and generator section,
as well as the root node of the corresponding tree pattern, available via an
implicitly defined variable, are within the scope of such expressions.

4.3.4 Semantic Actions

A semantic action is specified between (. and .). It comprises a piece of
code written in the target language of the code generator. Semantic actions
are executed by the generated code generator at the position where they
have been specified during the second top-down pass of the intermediate
representation.

Nodes matched by tree patterns are accessible through bindings in se-
mantic actions. A binding can be defined for each terminal and non terminal
in a tree pattern, and its scope ranges from its definition until the end of the
tree pattern. Code within each semantic action can also access variables and
methods defined in the declarations section of the specification. Listing 4.2
shows an example code generator specification demonstrating how to build a
list of machine code instructions for linked expression subtrees. References to
bindings and bindings themselves are underlined in order to highlight them.

public enum Kind {
   E_CONST,

   E_ADD,

   E_SUB,

   E_MULT

}

public class Node {
   Kind   kind,
   String val,
   String result,
   Node   left;
   Node   right;
}

Figure 4.6: Data Structure for intermediate representation nodes.

The language used within semantic actions is Java. Matching operators
and non terminals are of type Node and the corresponding data structure is
depicted in Figure 4.6. Lines 15 and 20 show how the global variable code of
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1 generator -- import statements
2 ( . import java.util.LinkedList;
3 import java.util.List;
4 import code.codegen.Code; . )
5 declarations -- general declarations
6 ( . List<String> code = new LinkedList(); . )
7 operators
8 NUM( . E_CNST . ) , ASGN( . E_ASGN . ) , ADD( . E_ADD . ) ,
9 SUB( . E_SUB . ) , MUL( . E_MUL . )

10 rules -- rewrite rules
11 stmts = stmt [ stmts ] : 0 . -- start rule
12 stmt = ASGN (reg ,NUM) ( . . . . . ) : 1
13 | ASGN (reg , reg ) ( . . . . . ) : 2 .
14 reg = NUM a ( . a.result = Code.getReg();
15 code.add("loadI "+
16 a.val +","+
17 a.result); . ) : 1
18 | ADD a ( reg b , reg c )
19 ( . a.result = Code.getReg();
20 code.add("add "+
21 b.result +","+
22 c.result +","+
23 a.result);
24 Code.freeReg(b.result);
25 Code.freeReg(c.result); . ) : 2
26 | SUB a ( reg c , reg c ) ( . . . . . ) : 2
27 | MUL a ( reg b , reg c ) ( . . . . . ) : 4 .
28 end

Listing 4.2: Referring to bindings and declarations in semantic actions.

type List<String>, defined in the declarations section, can be referenced
from semantic actions (i.e. instructions are inserted into code).

4.3.5 Attributes

Essentially the rewrite rule reg = ADD(reg,reg) produces a reg non terminal
by matching binary subtrees having an ADD root node that expects its child
nodes to produce reg non terminals. It is still unclear though how non
terminals can produce values and how to access them in semantic actions.
Listing 4.2 demonstrates a solution to this problem by storing the result (i.e.
the name of the register containing the result value) produced by the ADD
node in the result field of the Node data structure depicted in Figure 4.6.
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1 generator -- import statements
2 ( . import java.util.LinkedList;
3 import java.util.List;
4 import code.codegen.Code;
5 import code.codegen.Reg; . )
6 declarations -- general declarations
7 ( . List<String> code = new LinkedList(); . )
8 operators
9 NUM( . E_CNST . ) , ASGN( . E_ASGN . ) , ADD( . E_ADD . ) ,

10 SUB( . E_SUB . ) , MUL( . E_MUL . )
11 rules -- rewrite rules
12 stmts = stmt [ stmts ] : 0 . -- start rule
13 stmt = ASGN ( reg<.out Reg b.> ,NUM) ( . . . . . ) : 1
14 | ASGN ( reg<.out Reg b.> , reg ) ( . . . . . ) : 2 .
15 reg<.out Reg r.>
16 ( . r = Code.getReg(); . ) -- result register
17 = NUM a
18 ( . code.add("loadI "+ a.val +","+ r); . ) : 1
19 | ADD ( reg<.out Reg b.> , reg<.out Reg c.>)
20 ( . code.add("add "+ r +","+ b +","+ c);
21 Code.freeReg(b); Code.freeReg(c); . ) : 2
22 -- SUB and MUL patterns omitted
23 .
24 end

Listing 4.3: Defining attributes and referring to them in semantic actions.

While the previous ad-hoc approach works, it is rather unsatisfactory be-
cause in order to know the type and value that is produced by a rewrite rule,
one has to look into the implementation supplied within semantic actions.
Fortunately the well established attribute grammar formalism [18] provides
just the right solution for our problem. We simply annotate non terminals
with attributes denoting the values they produce. By doing so, it is possible
to explicitly encode information about resulting values of non terminals into
a grammar specification. Rewriting our previous example to include output
attributes yields the following:

• reg<.out Reg r0.> = ADD (reg<.out Reg r1.>, reg<.out Reg r2.>)

We distinguish between formal attributes, defined at the non terminals
declaration on the left hand side of a tree pattern, and actual attributes,
specified at the non terminals occurrence within tree patterns. While the
scope of a formal attribute ranges over all tree patterns that define a non
terminal, the scope of an actual attribute ranges from its definition until the



30 Tree Pattern Matching with Dynamic Programming

end of a tree pattern. So the previous rewrite rule defines a non terminal reg
that produces a value of type Reg stored into the variable r0, by specifying
the formal attribute <.out Reg r0.>. So far we only mentioned the possibility
to define output attributes for non terminals, but it is also possible to define
input attributes (see Appendix B for examples of input attributes).

The example in Listing 4.3 performs the same task as Listing 4.2 in the
previous section, but does so by using output attributes. It also demonstrates
how to define output attributes, and how to access them from within semantic
actions.

4.4 Summary

In this chapter we have dealt with the problem of effective tree pattern match-
ing using dynamic programming. We started by introducing fundamental
algorithms (see Section 4.2) used to calculate optimal instruction sequences
given a tree-structured intermediate representation, followed by a description
of how semantic actions are emitted for matching rewrite rules.

Before introducing our code generator description language we have out-
lined several limitations discovered in other languages based on our approach.
Support for attribute grammars (see Section 4.3.5), linked sequences of tree-
structured intermediate representations (see Section 4.1), and the ability to
place semantic actions almost anywhere within rewrite rules are our solutions
to the outlined limitations. Appendix A gives a precise syntax specification
for our code generator description language supplementing our descriptions
in Section 4.3.
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5
Hburg - Haskell Bottom Up Rewrite

Generator

This chapter starts with an overview of Hburg’s architecture
and module structure. Then, its intermediate representation is
outlined followed by a description of the context-sensitive anal-
ysis that is performed in order to statically verify the correct-
ness of grammar specifications. Next, Hburg generated code
for optimal instruction selection and code generation is de-
scribed. Finally, the integration of Hburg generated code into
a compiler is outlined.

Hburg is a code generator generator, which takes a cost-augmented tree
grammar and generates a code generator for this tree grammar. A tree
grammar defines a mapping from a tree-structured intermediate representa-
tion onto target machine instructions. The resulting code generator can be
plugged into the instruction selection phase of a compiler. Hburg produces
code generators written in Java, but its back end can be easily extended to
support other languages.

The acronym Hburg stands for Haskell Bottom Up Rewrite Generator and
denotes the fact that Hburg itself is implemented in Haskell, and produces
code generators that perform optimal instruction selection based on bottom
up rewrite system theory. The following sections outline Hburg’s architecture,
implementation, and the most important data structures. The integration of
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Hburg generated code generators into a compiler infrastructure is covered as
well.

5.1 Architecture

Hburg has a rather conventional compiler architecture consisting of a front
end and a back end. Its overall structure is depicted in Figure 5.1. The front
end builds a target-language-independent intermediate representation given a
code generator specification. The back end produces the final code generator.
The following paragraphs outline the main compiler phases implemented in
the front and back end:

• Front End: Lexical and syntactical analysis are the first two phases in
the front end. Both, the lexical analyzer as well as the parser are gen-
erated via tools, namely Alex1 and Happy2. Context-sensitive analysis
is performed during and at the end of parsing.

• Back End: The back end is separated into two phases. The Tile phase
emits code for optimal instruction selection, and the Evaluate phase
generates code that emits semantic actions for matching tree patterns.

Front End Back End
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Code

Generator

Specification
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Figure 5.1: Hburg compiler infrastructure.

In order to get a better understanding of Hburg’s implementation, it helps
to take a look at its organization at the module level. Haskell programs con-
sist of a collection of modules. Modules serve the dual purpose of controlling
name-spaces and creating abstract data types [13]. Hburg makes heavy use
of a syntactic extension of Haskell’s module system referred to as the “hierar-
chical module namespace”. This extension enhances the flat Haskell module

1Alex - A lexical analyzer generator for Haskell
2Happy - A dyslexic acronym for “A Yacc-like Haskell Parser generator”
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name-space as defined in The Haskell 98 Report [15], into a hierarchy of
modules, and is understood by most3 Haskell compilers. Figure 5.2 gives an
overview of Hburg’s most important modules and abstract data types as well
as their use. It also indicates which modules belong to the front end and back
end of the compiler. The Main module contains the main function which is
evaluated when Hburg is executed, and thus serves as the entry point.

Main Main module

Ast.Node

   .Def

   .Prod

   ...

Abstract data types used for constructing 

tree structured intermediate representation 

Csa.Csa

   .Ctx

   .Elem

Modules containing abstract data types and

functions for context sensitive analysis 

Gen.Backend

   .Emit

   .Emit.Tile

   .Emit.Eval

   ...

Abstract data types and modules for code

generation

Parser.Lexer

      .Parser

      ...

Modules for scanning and parsing

Front

End

Back

End

Module Name Description

Figure 5.2: Hburg modules overview.

The initial version of Hburg provides a back end that generates code gen-
erators written in the Java programming language. In order to add support
for a new target language, only the back end must be extended while the
front end can remain unchanged.

Hburg’s intermediate representation is used to introduce its most impor-
tant data structures in the following sections. Next, context sensitive analysis
consisting of scope and type analysis is outlined. Finally, the code genera-
tion phases of the compiler, denoted as Tile and Evaluate in Figure 5.1,
are introduced in greater detail.

5.1.1 Intermediate Representation

A code generator specification is mapped onto an intermediate representa-
tion from which target code is generated. The intermediate representation

3GHC, NHC, and Hugs support the hierarchical module namespace extension to Haskell 98
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resembles a list of rewrite rules. Rewrite rules define non terminals in terms
of tree patterns. Thus a rewrite rule consists of a forest of tree patterns that
are made up of terminals, non terminals, bindings, semantic actions, and
costs. Every part of a rewrite rule is represented by an abstract data type.
Figure 5.3 depicts abstract data types that represent a rewrite rule.

Definition
Production

ADD a1 (reg <.out r1.>, 
        reg <.out r2.>) (.....) : 2.

reg <.out Reg r.> =

Nt Attr T
Binding

Nt Attr Code Cost

Figure 5.3: Mapping a rewrite rule onto abstract data types defined in Hburg.

The corresponding Haskell data type definitions are specified in List-
ing 5.1. The first line declares a terminal T to be a new data type, with a
single data constructor T. The constructor has two fields : an Ident giving
the name of the terminal, and a Binding representing an identifier that can
be used to refer to a terminal within a semantic action. The non terminal
data type Nt has the same fields as T, with the addition of a list of attributes
denoted by [Attr].

1 data T = T Ident Binding
2 data Nt = Nt Ident Binding [ Attr ]
3 data Term = Terminal T
4 | NonTerminal Nt
5 data Node = Ni l
6 | N { term : : Term
7 , c h i l d : : Node
8 , s i b l i n g : : Node
9 , l i n k : : Node

10 , code : : Map Pos i t i on Code }
11 data Production = Prod { pattern : : Node
12 , c o s t : : Cost }
13 data De f i n i t i o n = Def { nt : : Nt
14 , prods : : [ Production ] }

Listing 5.1: Hburg’s intermediate representation defined in terms of algebraic
Haskell data types.
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child

child

sibling sibling

sibling

link

IFELSE 

   (cond
       (exp,
        exp),
    stmts,
    stmts)

[ stmts ]

stmts
IF

ELSE

exp

cond stmts stmts

exp

Tree Pattern

Specification
Intermediate Representation

Figure 5.4: Mapping a tree pattern onto Hburg’s intermediate representation.

In general, a Haskell data type comprises one or more constructors (i.e.
the data types Term and Node both have two constructors), and each con-
structor can have zero or more fields (i.e. the constructor Nil has no fields).
Furthermore the definitions of the Node, Production, and Definition data
types make use of Haskell’s record syntax.

A tree data structure is used to represent tree patterns. Trees are defined
in terms of a Node data type (see line 5 in Listing 5.1). This type is able
to capture tree patterns that contain subtrees with varying degrees as the
example outlined in Figure 5.4 demonstrates. The remaining data types in
Listing 5.1 have the following semantics:

• Production: The Production type resembles a tree pattern with its
associated cost.

• Definition: A rewrite rule consists of a non terminal Nt defined in
terms of a list of Productions and has the type Definition.

• Term: Often it is necessary to deal with terminals and non terminals
in a uniform way. This is possible by wrapping them into a Term data
type.

The previously introduced data types denote essential parts of Hburg’s
intermediate representation. One question we have yet to answer is where
and how semantic actions are stored. Our code generator language allows
definitions of semantic actions at various positions within tree patterns (see
Section 4.2.2). Thus each node has to store semantic actions defined at its
tree level. A node stores this information in its code field (see line 10 in
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Listing 5.1). The data type of this field denotes a Map4 of keys to values,
where keys denote the relative position of a semantic action within a tree
pattern, and values denote the corresponding semantic actions.

5.1.2 Context Sensitive Analysis

Our code generator language should be a safe language, thus Hburg performs
a range of checks in order to statically verify the absence of certain kinds
of runtime errors. Pierce [22] gives a good intuition of language safety by
stating that “a safe language is one that protects its own abstractions”. In
the context of our code generator language such abstractions resemble the
definition of rewrite rules in terms of terminals, non terminals, attributes,
bindings, semantic actions, and costs. So Hburg checks that all abstractions
specified in our language are well-defined, and used in the correct context by
performing scope and type analysis:

• Scope Analysis

– Within the scope of a tree pattern a binding identifier for a ter-
minal or non terminal may only be specified once. Thus the tree
pattern “ADD (reg r1,reg r1) : 0” results in a duplicate binding error
since the identifier r1 is used twice within its scope.

– Each terminal must be defined in the operators section before it
can be used in the rules section.

– Non terminals used within tree patterns must be defined at some
point within the rules section, and the amount and order of in
and out attributes must conform to their definition.

• Type Analysis

A Definition defines a non terminal in terms of Productions. Pro-
ductions are defined in terms of terminals and non terminals, and can
be categorized into chain rules and base rules. Chain rules derive one
non terminal from another, and base rules define a concrete tree pattern
that derives a non terminal. For each concrete tree pattern captured
by a base rule we check that all of its child nodes have the correct types
with respect to the non terminals they derive. The following example
demonstrates a flawed specification that fails with a type error at the

4Map - Haskell library implementation of maps from keys to values.
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underlined non terminal:

1 reg = CONST : 1
2 | ADD (reg , reg ) : 2 .
3 val = OP (ADD (reg , val ) , reg ) : 3 .

The production “ADD (reg,reg)” at line 2, defines that tree patterns
having ADD as their root node, expect their left and right children to
produce nodes of type reg. Furthermore, it defines that “ADD (reg,reg)”
derives the type reg. Now let’s try to type check the definition on line
3. Obviously the right child node of OP is of type reg. But what type
does its left child node “ADD (reg,val)” derive? There is no rewrite rule
that would allow us to infer the type of “ADD (reg,val)”.

Fortunately, the problem can be fixed easily by extending the definition
of reg with a chain rule that derives a reg from a val as defined at line 1:

1 reg = val : 1
2 | CONST : 1
3 | ADD (reg , reg ) : 2 .
4 val = OP (ADD (reg , val ) , reg ) : 3 .

With the additional chain rule Hburg is able to infer that “ADD (reg,val)”
can be transformed into “ADD (reg,reg)”, and for this pattern the type
it derives is known.

Semantic actions are not analyzed by Hburg, they are simply copied to the
generated code generator without being checked. Thus the target language
compiler has the task to detect syntactic and semantic errors in semantic
actions.

5.1.3 Optimal Instruction Sequence Calculation

Given a set of cost-augmented rewrite rules, a tree-structured intermediate
representation must be optimally tiled with matching rules. Thus for each
node we must record a set of lowest-cost matching tree patterns together
with the non terminals they produce.

The procedure Tile outlines an algorithm that finds an optimal tiling for
a tree rooted at node n. In order to simplify the algorithm, two assumptions
about the form of rewrite rules have been made. First, each operation has,
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Procedure Tile(Node n)

if n is a binary node then
Tile(n.left)
Tile(n.right)
foreach pattern p that matches n’s operation do

if Nt(p.left) ∈ NtSet(n.left) ∧
Nt(p.right) ∈ NtSet(n.right) then
c ← Cost(n.left,Nt(p.left)) +

Cost(n.right,Nt(p.right)) + p.cost
if Nt(p) &∈ NtSet(n) ∨ c < Cost(n,Nt(p)) then

record(n,Nt(p),c)
if Nt(p) triggers chain rules then

Closure(n,Nt(p),c)
end

else if n is unary node then
Tile(n.left)

16 foreach pattern p that matches n’s operation do
17 if Nt(p.left) ∈ NtSet(n.left) then
18 c ← Cost(n.left,Nt(p.left)) + p.cost
19 if Nt(p) &∈ NtSet(n) ∨ c < Cost(n,Nt(p)) then
20 record(n,Nt(p),c)
21 if Nt(p) triggers chain rules then
22 Closure(n,Nt(p),c)

end
else /* n is a leaf node */

foreach pattern p that matches n’s operation do
record(n,Nt(p),p.cost)

end

at most, two operands. Second, a rule’s right-hand side contains at most one
operation. The algorithm can be extended to handle the general case, but
that would only complicate its explanation. Cooper and Torczon [3] give a
similar algorithm that finds all matches in a pattern set for each node. We
have extended their algorithm so that it finds the lowest-cost match given a
pattern set.

The problem of finding an optimal tiling for a tree is subdivided into
subproblems of finding optimal tilings for its subtrees. A postorder traversal
ensures that the solutions to subproblems are constructed incrementally from
those of smaller subproblems, and by recording each solution of a subproblem
we avoid recomputation.
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Procedure Closure(Node n, NonTerminal nt, Cost c)

foreach non terminal x derived by nt do
if x &∈ NtSet(n) ∨ x.cost + c < Cost(n,x) then

record(n,x,x.cost + c)
if x triggers chain rules then

Closure(n,x,x.cost + c)
end

Consider the foreach loop at line 16 in our Tile procedure. It examines
each pattern p that implements the operation specified by n. The function
NtSet(Node n) returns the set of non terminals node n can derive, similarly,
the function Nt(Pattern p) returns the non terminal derived by tree pattern
p. If the condition at line 17 holds, then Tile has already discovered that n’s
left subtree generates a non terminal that is expected by pattern p. Next, n’s
cost c is calculated at line 18, by adding the cost of its left subtree to the cost
of the selected tree pattern p. The function Cost(Node n, NonTerminal nt)
returns the overall cost of deriving nt from node n. The matching pattern
together with its cost c is recorded for the current node n (see line 20), if
the node does not derive the non terminal demanded by Nt(p), or if c is
lower than the cost for deriving a non terminal Nt(p) at the current node
n. Finally, if the non terminal derived by pattern p triggers chain rules, the
procedure Closure records all triggered chain rules for node n.

Hburg emits an implementation of the Tile algorithm that can process
unrestricted tree patterns with arbitrary numbers of subtrees. While the de-
scription of the Tile algorithm is language independent, its implementation
depends on the target language of the resulting code generator. Further-
more, it is important to efficiently store and retrieve information necessary
to calculate an optimal rewrite rule cover.

public class Entry {
   int     cost,
   Pattern pat;
}

public class Node {
   Kind   kind,
   Node   left;
   Node   right;
   EnumMap<Nt,Entry> map;
   ...

}

Figure 5.7: Node data structure for optimal instruction selection.
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1 stmt s1= s2 ASGNI s3 ( s4 disp s5 , s6 reg<.out r.> s7 ) s8 ( L0 )
2 | s9 reg<.out r.> s10 . ( L1 )
3 reg<.out Reg r.> s11

4 = ADDI ( s12 reg<.out r1.> , s13 reg<.out r2.>) s14 ( L2 )
5 | IO I rc s15 ( L3 )
6 | CNSTI s16 ( L4 )
7 | disp s17 . ( L5 )
8 disp = ADDI ( reg<.out r.> ,CNSTI ) s18 ( L6 )
9 | ADDRLP s19 . ( L7 )

Listing 5.2: Examples of rewrite rules without cost annotations and with labels in
parentheses. Semantic actions are denoted by sn.

A Java datastructure that stores such information for each Node in a map
of type EnumMap is outlined in Figure 5.7. An EnumMap is a specialized map
implementation for use with enumeration type keys. It maps non terminals
encoded by the enumeration Nt to entries of type Entry, where an Entry
consists of a Pattern that was chosen to derive the Nt, and its cost. By
using an EnumMap, the implementation of Tile is both, straightforward and
efficient with respect to access time and memory size.

5.1.4 Optimal Instruction Sequence Code Generation

Once an optimal rewrite rule cover of an intermediate representation has been
found, tree patterns that have been recorded for each node can be processed.
Processing a tree pattern corresponds to traversing a subtree of the interme-
diate representation, and emitting semantic actions at the positions where
they have been defined. This occurs during the second top-down traversal of
the intermediate representation that is designated as the Evaluate phase in
Figure 5.1.

Listing 5.2 shows a partial set of rewrite rules for an example intermediate
representation where semantic actions are denoted by sn. Costs have been
omitted since they are not needed during the second top-down pass over the
intermediate representation. Rule labels are enclosed in parentheses at the
end of tree patterns. They are only used internally to refer to each pattern
and must not be specified explicitly.

Listing 5.3 shows Java code that is emitted for the first two rewrite rules
defined in Listing 5.2. Each derivation of a non terminal in terms of tree
patterns corresponds to a method having the current Node as a parameter.
Thus each rewrite rule is considered as a tree pattern parsing method. The
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1 void stmt (Node n) {
2 s1

3 switch ( label (n , "stmt" ) ) {
4 case L0 : {
5 s2 s3

6 s4 disp ( l e f t (n ) ) ; s5

7 s6 Reg r = reg ( r i g h t (n ) ) ; s7

8 s8 break ;
9 }

10 case L1 : { s9 reg (n ) ; s10 break ; }
11 }
12 }
13 Reg reg (Node n) {
14 Reg r ; s11

15 switch ( label (n , "reg" ) ) {
16 case L2 : {
17 s12 Reg r1 = reg ( l e f t (n ) ) ;
18 s13 Reg r2 = reg ( r i g h t (n ) ) ;
19 s14 break ;
20 }
21 case L3 : { rc = n ; s15 break ; } /* binding */
22 case L4 : { s16 break ; }
23 case L5 : { disp (n ) ; s17 break ; }
24 }
25 return r ; /* return output attribute */
26 }

Listing 5.3: Code generator implemenation of the first two rewrite rules specified
in Listing 5.2. Semantic actions are denoted by sn, output attribute types are bold
face, and method calls corresponding to non terminals are italicized.

occurrence of a non terminal within a tree pattern can be viewed as a call
of the non terminal’s parsing method. Semantic actions, denoted by sn in
Listing 5.3, are copied in verbatim to their respective position in the resulting
code generator.

Non terminals can have attributes as is the case for reg at line 3 in List-
ing 5.2. Such attributes correspond to parameters of the non terminal’s tree
pattern parsing method. For our Java back end this means that output at-
tributes are translated to method definitions with the corresponding return
type and return statement, whereas input attributes are translated to formal
parameters of methods. Line 15 in Listing 5.2 demonstrates how reg ’s output
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attribute is translated into a Java method definition.

Node bindings as defined on line 5 in Listing 5.2 are translated into corre-
sponding assignments in the target language as line 22 in Listing 5.3 demon-
strates. The node matching the operator IOI is assigned to the variable rc
which in turn can be accessed in the subsequent semantic action s15.

The previously mentioned rule labels are encoded as enumerations in
Java, and for each node the label denoting the non terminal that the rule
derives is inspected in a switch statement as line 3 in Listing 5.3 demon-
strates.

The top-down pass over an intermediate representation performed by the
resulting code generator is very similar to the way a top-down Ll(k) recur-
sive descent parser works. We have exploited this resemblance by defining
a language that incorporates two powerful features available in recursive de-
scent parsers, namely (1) the possibility to define semantic actions almost
anywhere within tree patterns, not just at the end, and (2) the possibility to
define attributes for non terminals in our code generation language.

5.2 Invoking Hburg

The invocation of Hburg has the following syntax:

$ hburg [ op t ions ] f i l ename [ op t ions ]

All command line options are optional and may occur either before or
after the input filename. Options that take multiple arguments may be given
multiple times, but the last occurrence will be the value used. The flags
accepted by Hburg are as follows:

-c Class, --classname=Class

Specifies the class name of the generated code generator. If omitted,
Hburg assigns the name Codegen.

-p Package, --package=Package

Instructs Hburg to place the resulting code generator into the specified
Java package (e.g. comp.gen). If omitted, all files are placed into the
current working directory.
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-t Type, --type=Type

This option specifies the data type that discriminates intermediate rep-
resentation nodes. If omitted , this option defaults to NodeKind.

-d, --debug

Directs Hburg to output the result of parsing a code generator descrip-
tion file to standard output.

Given a code generator specification file gen.tpg that resides in the cur-
rent directory, a type for discriminating intermediate nodes of Kind, and the
package comp.gen that should include the resulting code generator, one in-
vokes Hburg as follows:

$ hburg −t comp.ir .Kind −p comp.gen gen.tpg

5.3 Integrating Hburg Generated Code

After defining a code generator specification and running it through Hburg as
depicted in Figure 5.8, the resulting code generator must be integrated into
an existing compiler. Two interfaces, namely the Code Generator and the
Node interface, are visible to the compiler writer when using Hburg’s code
generator. The enumeration classes Nt and Rule as well as the Entry class
need not concern the compiler writer.

Code Generator

Description

HBURG

Compiler

Code 

Generator

Node 

Interface

Nt 

Enumeration

Rule 

Enumeration

Entry

per Node

Figure 5.8: Input and Output of Hburg.
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1. Node Interface

In order to traverse a tree-structured intermediate representation, Hburg
requires an implementation of a Node interface that provides all meth-
ods necessary for tree traversal. Given a code generator specification,
it infers how many children an intermediate representation node has,
and if link nodes are present. That information is then used to emit
the appropriate Node interface.

During the calculation of an optimal instruction sequence as outlined in
Section 5.1.3, it is necessary to store selected rewrite rules, the non ter-
minals they derive, as well as their cost, for each node. Figure 5.9 shows
a Node interface emitted by Hburg for binary intermediate representa-
tion nodes with links to subtrees. The contract defined by the interface
guarantees Hburg that methods to traverse and query intermediate rep-
resentation nodes, and methods to store and retrieve information for
optimal instruction sequence calculation, are implemented.

public interface Node {
   Node     child1();
   Node     child2();
   Node     link();
   Kind     kind();
   boolean  is(Nt nt);
   int      cost(Nt nt);
   Rule     rule(Nt nt);
   Entry    put(Nt nt, Entry e);
   Entry    get(Nt nt);
}

traverse

query

store and

retrieve

Figure 5.9: Java Node interface emitted by Hburg.

2. Code Generator Invocation Interface

Invoking the code generator is as simple as calling its emit() method,
passing it a reference to the root node of a tree-structured interme-
diate representation. Additionally, any parameters defined as input
attributes for the start rule of a code generator specification must be
passed to the emit() method. The return value of emit() is either
void, or the output attribute specified by the start rule.

Appendix B provides a concrete example demonstrating how to imple-
ment the Node interface and how to invoke an Hburg generated code gener-
ator.
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5.4 Summary

In this chapter we have outlined Hburg’s architecture, data structures, algo-
rithms, and interfaces. We started by conveying Hburg’s module structure
with respect to its compilation phases. We also described Hburg’s inter-
nal representation of code generator description grammars that is capable of
capturing rewrite rules consisting of arbitrary tree patterns augmented with
semantic actions and costs.

Scope and type analysis of grammar specifications was the topic of Sec-
tion 5.1.2, indicating the types of errors that can be statically detected. Next,
Section 5.1.3 introduced an algorithm for calculating an optimal instruction
sequence given cost-augmented rewrite rules for a tree-structured intermedi-
ate representation. Having determined how to select optimal instructions, we
looked at the code generation phase of the resulting code generator in Sec-
tion 5.1.4. Finally, we descibed the integration and invocation of an Hburg
generated code generator into a compiler infrastructure.
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6
Conclusions

This final chapter summarizes our approach to the field of
automatic code generation as well as our contributions. We
also suggest further improvements of our code generator de-
scription language and Hburg, our implementation of a code
generator generator.

In this master thesis we have designed a code generator description lan-
guage together with a reference implementation of a code generator genera-
tor called Hburg. It generates code generators from a set of cost-augmented
rewrite rules, that produce optimal code for tree-structured intermediate rep-
resentations.

The principal mechanism for finding optimal instruction sequences is
based on tree pattern matching combined with dynamic programming. Dy-
namic programming can either be delayed until the code generation phase
of a compiler, or moved to code generator generator construction time by
building a bottom up rewrite system automaton. We have decided in favor
of the first approach despite the fact that it is necessarily slower than the
latter table-driven approach. The reasons are as follows:

• Debugging code generators based on the first approach is simpler be-
cause information is recorded explicitly for each node, making it easier
to compare the code generators’ actual operations with expected re-
sults. The latter table-driven approach makes it very difficult to find
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errors because the only output in such a case usually consists of impos-
sible to understand numbers encoding some state in a table.

• The close resemblance of the first approach to recursive-descent Ll(k)
parsers allows for great flexibility with respect to the placement of
semantic actions. A table-driven approach only allows the definition of
semantic actions at the end of a pattern.

• The resulting code generators are much smaller in size and easier to
implement than their table-driven counterparts.

Hburg performs many static checks to verify the integrity of grammar
specifications. Additionally, it tries hard to provide useful error messages in
case mistakes happen.

We also focused on simplifying the integration of code generators into a
compiler. In order to integrate a code generator produced by Hburg’s Java
back end, only one simple interface must be implemented besides calling the
respective code generation method.

6.1 Summary of Contributions

Given the current state of the art of code generators and code generator
description languages, the following items list our main contributions in this
field:

1. Ganapathi [8] was the first to suggest the use of attribute grammars for
code generators based on Lr parsing techniques. We have successfully
shown that the attribute grammar formalism can also be integrated
into code generators based on tree pattern matching combined with
dynamic programming at compile time.

2. Other code generator description languages allow the definition of se-
mantic actions only at the end of tree patterns. The language we de-
vised allows semantic actions to be defined almost anywhere within tree
patterns. This works because the second phase of the resulting code
generator performs a top-down pass over a tree-structured intermediate
representation that is already labeled with matching tree patterns.

3. Our tree pattern matching language also supports intermediate repre-
sentations that consist of linked subtrees as suggested by Crelier [4]
and outlined in Section 4.1.
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6.2 Future Work

In future work we would like to improve the speed of the first bottom-up
pass over the intermediate representation. Our current implementation uses
recursive function calls where the compiler inserts code that manages the
function stack upon each function invocation. But the overhead of a function
call is expensive when all we need in order to traverse tree data structures is a
simple stack that stores unprocessed nodes. Such an algorithm is outlined by
Knuth [17] and we conjecture that compared with our current approach based
on recursive function calls, it improves the performance of code generators,
especially for target languages that do not support tail call optimizations. It
is questionable though if the added complexity of manual stack management
is worth the resulting speed improvement.

We would also like to improve Hburg’s back end. The process of im-
plementing support for another target language should reveal opportunities
where our current back end implementation can be improved with respect to
modularity and extensibility.

Ebnf has constructs that capture optional patterns ’[. . .]’ and sequences
’{. . .}’. Our code generator language supports linked subtrees as optional
patterns defined at the end of a rewrite rule. We would like to extend our
code generator description language with full support for optional patterns
and pattern sequences similar to Ebnf.
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Appendices
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A
Language Syntax

digit = ’0’
∣∣ ...

∣∣ ’9’.

alpha = digit
∣∣ ’a’

∣∣ ...
∣∣ ’z’

∣∣ ’A’
∣∣ ...

∣∣ ’Z’.

ident =
(
’a’

∣∣ ...
∣∣ ’z’

∣∣ ’A’
∣∣ ...

∣∣ ’Z’
) {

alpha
∣∣ ’ ’

∣∣ ’-’
}
.

G→ Code Generator

G = generator Sem declarations Sem

operators Op rules D
{

D
}

end.

Op→ Operator

Op = identu Sem
{

’, ’ identu Sem
}
.

D→ Definition

D = ident l

[
’<.’Ad ’.>’

]
Sem ’=’ Prod ’.’.

C→ Cost

C = digit
{
digit

}
∣∣ Sem.
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Prod→ Production

Prod = Prod ’|’ Prod
∣∣ Sem T Sem

[
Pat Sem

] [
’[’ Sem Nt Sem ’]’ Sem

]
’ : ’ C

∣∣ Sem Nt Sem
[
’[’ Sem Nt Sem’]’ Sem

]
’ : ’ C.

Pat→ Pattern

Pat = ’(’ Elem
{

’, ’ Elem
}
.

Elem→ Element

Elem = Sem
(
Nt Sem

∣∣ T Sem
[
Pat Sem

] )
.

Nt→ Non Terminal

Nt = ident l

[
’<.’A ’.>’

] [
ident

]
.

T→ Terminal

T = identu
[
ident

]
.

Ad→ Attribute Definition

Ad = Ad ’, ’ Ad
∣∣ [

out
]
Type ident .

A→ Attribute

A = A ’, ’ A
∣∣ [

out
]
ident

∣∣ Ad .

Sem→ Semantic Action

Sem =
[

’(.’ ... ’.)’
]
.

Type→ Data Type

Type = ident .

Ebnf [28] is used to describe the syntax of our code generator description
language. There are two slight deviations from Ebnf which require further
explanation:

• Identifiers denoted by the non terminal ident include upper and lower
case alphabetic characters. The subscripts u and l denote that an ident
may only contain upper or lower case alphabetic characters.

• The dots in the definition of semantic actions (. ... .) denote that
any character sequence except .) may occur between (. and .).
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B
Code Generation Examples

This Appendix presents two complete code generation exam-
ples. First, a high level example program and its intermediate
representation are given. Next, two code generator specifica-
tions for Risc and Cisc target architectures are presented.
Finally, target machine code that is produced for the introduc-
tory example program is analyzed for each code generator.

The following high level example program calculates and prints the great-
est common divisor of two integral values:

1 Program
2 Var r : Integer ;
3 Procedure Gcd(x , y : Integer ) : Integer ;
4 Var r e s t , t : Integer ;
5 Begin
6 If y > x Then t := x ; x := y ; y := t ; End ;
7 r e s t := x % y ;
8 While r e s t > 0 Do
9 x := y ; y := r e s t ; r e s t := x % y ;

10 End ;
11 Return y ;
12 End Gcd ;
13 Begin (∗ Main Program ∗)
14 r := Gcd( 2 4 , 1 8 ) ; PutInt( r ) ;
15 End .

Listing B.1: Program calculating Greatest Common Divisor.
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The program in Listing B.1 is written in a subset of the Oberon-0 lan-
guage (see Wirth [29]). Our goal is to write a compiler in Java that produces
assembler code for programs written in this language. We will not concern
ourselves with lexical analysis, parsing, type checking, or optimization. In-
stead, we focus on the compiler back end. First, we start by defining an
intermediate representation. Then, we develop two code generators that
map this representation onto Risc and Cisc assembler code.

The back end of our compiler is generated automatically by Hburg from
a code generator specification. But before we can write a code generator
specification for a target architecture, we have to define our intermediate
representation. The Oberon-2 compiler uses a binary tree intermediate rep-
resentation with extra pointers that link sequences of subtrees (see Figure 4.2
and Crelier [4]). Since our input language is a subset of Oberon-0, it makes
sense to adopt a similar representation and define a binary Node as follows:

class Node {
Kind kind ; // var,plus,assign. . .
Node l e f t ; // left son
Node r i gh t ; // right son
Node l i n k ; // next tree
Obj obj ; // symbol table entry
Constant va l ; // leaves that are constants

}

The following enumeration defines possible Kind’s of Node’s:

enum Kind {
Add,Sub ,Mul,Div ,Mod, // integer arithmetic
Eq,Leq ,Geq,Lth ,Gth, // comparison operators
If , Ife , Eif ,While , // contol flow
Cnst ,Var, // constant ,variable
Asgn , // assignment
Enter ,Ret , // proc definition , return statement
Procp ,Proc , // proc call with or without parameters
Funp ,Fun , // fun call with or without parameters
Rootd,Root // program with or without procedure definitions

}

Nodes representing variables, constants, and procedures, store references to
elements of type Obj within a symbol table:

class Obj {
St r ing name ; // symbol name
Type type ; // Int,Void
Kind kind ; // Cnst,Var,Param,Proc
int adr ; // Var,Param
int l e v e l ; // Var: 0 = global, 1 = local
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int varSize , parS i z e ; // for procedures
. . .

}

For the sake of simplicity we only allow for Integer and Void data Types in
our source language:

enum Type {
Void ( 0 ) ; // 0 bytes
Int ( 4 ) , // 4 bytes
private int s i z e ; // in bytes
Type ( int s ) { s i z e = s ; }
public int s i z e ( ) { return s i z e ; }

}

With the previously defined data structures, we can now outline tree-structured
intermediate representations for our language constructs. A language con-
struct falls in one of two categories depending on the type of value it produces:

1. Constructs that return a value of type Void belong to the category of
statements. Assignments, control flow constructs, variable and proce-
dure definitions, and calls to procedures returning values of type Void
belong to this category.

2. Any construct yielding a value that is not of type Void belongs to the
category of expressions. Integer arithmetic, comparison operators, and
function calls are examples of this category.

ASGN

VAR

"x"

INT

VAR x,y,z : INT;

x := x * 2 - z;

y := y + x;

VAR

"y"

INT

SUB ADD

MUL
VAR

"z"

INT
CNST

2

INT

VAR

"x"

INT

VAR

"y"

INT

VAR

"x"

INT

Example Code Intermediate Representation

ASGN

Figure B.1: Tree-structured Ir for expressions and assignments.

Figure B.1 shows a tree-structured intermediate representation for two se-
quential assignment statements. Each expression and statement is mapped
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WHILE exp1 DO
  stmts1
END

IF exp2 THEN 
  stmts2
ELSEIF exp3 THEN
  stmts3
ELSE

  stmts4
END

Example Code Intermediate Representation

WHILE IFE

EIF EIF

exp1 stmts1

exp2 stmts2 exp3 stmts3

stmts4

Figure B.2: Tree-structured Ir for control flow statements.

onto a binary tree, and sequences of statements are connected via link refer-
ences (see Node data type definition).

Figures B.2 and B.3 demonstrate intermediate representations for con-
trol flow statements and procedure calls together with their definitions. Fig-
ure B.4 depicts the intermediate representation for our introductory example
program given in Listing B.1. After having defined a tree-structured rep-
resentation for our input language, the next step consists of analyzing the
target architecture by studying its instruction set, addressing modes, and
memory layout.

PROGRAM

 VAR x : INT;

 PROCEDURE P(x,y:INT);

 BEGIN

  stmts1
 END

 PROCEDURE F(x:INT):INT;

 BEGIN

  stmts2
 END

BEGIN

 P(F(x),3);

 stmts3
END.

Example Code Intermediate Representation

stmts1 stmts2

ROOTD

ENTER

"P"

ENTER

"F"

PROCP

"P"

VOID

FUNP

"F"

INT

CNST

3

INT

VAR

"x"

INT

stmts3

Figure B.3: Tree-structured Ir for procedure definition and application.
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ROOTD

ENTER

"Gcd"

IF

GTH ASGN ASGN ASGN

ASGN WHILE

GTH

y x t x x y y t

rest

x y rest 0

ASGN

x y

ASGN

y rest

ASGN

rest

%

RET

y

x y

%

ASGN

r FUNP

"Gcd"

24 18

PROCP

"PutInt"

r

Figure B.4: Tree-structured Ir for greatest common divisor example in Listing B.1.

Instruction sets for Risc architectures are highly regular because they
store their result and expect their operands in registers. Cisc architectures
on the other hand provide instructions with irregular operand access pat-
terns where each instruction may pose different restrictions on the location
of its operands. Some instructions expect both of their operands to reside
in registers, others can access one operand directly from memory while the
other has to reside in a register, and there are instructions that restrict their
operands to specific registers (e.g. Ia-32 multiplication instruction DIV).

Given an instruction set, we have to tile our intermediate representation
in such a way that each possible subtree is covered by its corresponding
instruction sequence. A subtree cover is specified via a tree pattern and the
value it derives depends on the result produced by the target instructions
that implement it. Defining tree patterns for Risc architectures is straight
forward since each instruction expects its operands in registers and produces
a result in a register. Tree patterns for Cisc architectures must capture
various operand access patterns (e.g. register, immediate, memory).

The following two examples demonstrate how to specify a code generator
description that maps the previously introduced intermediate representation
onto Risc and Cisc assembler code.
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B.1 Risc Code Generator

In this section we first outline a simple Risc target architecture by defining
its register set, available instructions, and the layout of the runtime stack.
Finally we present a complete code generator specification for this archi-
tecture and present the output it produces for our introductory example in
Listing B.1.

B.1.1 Risc Architecture Overview

The following Java enumeration outlines the available set of registers:

enum Reg {
R1 ,R2 ,R3 ,R4 ,R5 ,R6 ,R7 ,R8 ,R9 , R10 , R11 , R12 , R13 , R14 , R15 ,
R16 , R17 , R18 , R19 , R20 , R21 , R22 , R23 , R24 , R25 , R26 , R27 , R28 ,
R29 , // FP. . .frame pointer
R30 , // SP. . .stack pointer
R31 , // LNK. . .return address
R0} // always zero

It is safe to store any values in registers R1 through R28, whereas registers
R29, R30, R31, and R0 are special. R29 contains the current frame pointer
(Fp), R29 the stack pointer (Sp), R31 the return address (Lnk), and R0 is
always zero. The allocation of registers is implemented in its most basic form
by allocating registers on demand and freeing them as soon as possible.

Available instructions include integer arithmetic operations, comparison
operations, conditional and unconditional branch operations as well as load
and store operations:

enum Op {
// Integer arithmetic

Add,Sub ,Mul,Div ,Mod, // OP a, b, c - R.a := R.b OP R.c
Addi , Subi ,Muli , Divi ,Modi , // OP a, b, c - R.a := R.b OP c

// Comparison instructions
Eq,Leq ,Geq,Lth ,Gth, // CMP a, b, c - R.a := R.b CMP R.c
Eqi , Leqi ,Geqi , Lthi ,Gthi , // CMP a, b, c - R.a := R.b CMP c

// Conditional and Unconditional branch instructions
Cbr , // CBR a, b, c - jump to address R.b if R.a is true,else to R.c
Jsr , // JSR c - save PC in R31,then jump to address in R.c
Jmp , // JMP c - jump to address in R.c

// Load and Store instructions
Ldw, // LDW a, b, c - R.a := Mem[R.b + c] - load word
Stw} // STW a, b, c - Mem[R.b + c] := R.a - store word
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Operands can refer to immediate values or values stored in registers and the
following Item data type is used to encode them:

class Item {
Mode mode ; // CNST,VAR,REG
Type type ;
Constant v ; // CNST:value
int o f f ; // VAR:offset
Reg r ; // REG:register

// create operand
Item ( ) { }
Item (Mode m, Type t ) { mode = m; type = t ; }

// emit operand
public St r ing toS t r i ng ( ) {

switch (mode) {
case CNST:{ return v. t oS t r i ng ( ) ; }
case VAR: { return I n t eg e r . t oS t r i ng ( o f f ) ; }
case REG: { return r . t oS t r i ng ( ) ; }
default : { return null ; }

}
}

The runtime stack layout is depicted in Figure B.5. The stack starts from
high addresses and grows downwards. Register R29 always contains the ad-
dress to the beginning of the current frame, and register R30 always points to
the current stack top. We assume that registers holding the stack and frame
pointers are initialized appropriately before execution commences.

saved LNK

saved  FP

parameter slots

local variables

return slot

Top

of Stack

Bottom

of Stack

Parent

Frame

Current

Frame

SP

FP

Stack grows

down

Figure B.5: Risc runtime stack layout.



62 Code Generation Examples

B.1.2 Risc Code Generator Implementation

This section includes a Risc code generator specification together with ex-
amples that demonstrate how to invoke and integrate Hburg generated code.
Furthermore the implementation of a Code manipulation class that provides
common code generation functionality used throughout the specification is
given as well.

generator -- RISC code generator specification
( . import static sl.ir.Kind.*; // node kinds

import sl.parser.Obj;
import sl.parser.SymTab;
import sl.ir.Node;
import sl.code.Lab; // assembler labels
import java.util.List; . )

declarations
( . private static Code c; // target code manipulation

private static SymTab t; // symbol table . )

operators
Add,Sub ,Mul,Div ,Mod,Eq,Leq ,Geq,Lth ,Gth,
Asgn ,Cnst ,Var, If , Ife , Eif ,While ,
Enter ,Ret ,Procp ,Proc ,Funp ,Fun ,Rootd,Root

rules

-- Start Rule
root <.out List<String> code, SymTab tab.>

( . c = new Code(); code = c.code; t = tab; . )
= ( . c.put(Lab.MAIN); . )
Root r ( . Obj o = ((Node)r).obj; c.init(o.varSize); . ) ( stmtseq ) : 0
| Rootd r ( . Obj o = ((Node)r).obj; . )

(procdefseq ( . c.put(Lab.MAIN); c.init(o.varSize); . ) , stmtseq ) : 0 .

-- Procedure Definitions
procdefseq = procdef [ procdefseq ] : 0 .
procdef

= Enter e ( . Obj o = ((Node)e).obj;
c.put(Lab.funLab(o.name,o.next));
c.prologue(o.varSize); . )

( stmtseq )
( . c.epilogue(o.parSize); . ) : 0 .
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-- Statements
stmtseq = stmt [ stmtseq ] : 0 .
stmt

= ( . Lab t = new Lab(),f = new Lab(); . )
If (cond<.out Item x.>

( . c.put(Op.CBR,x.r,t,f); c.freeReg(x.r); c.put(t); . )
, stmtseq ( . c.put(f); . ) )

: 1
| ( . Lab end = new Lab(); . )

Ife ( ei fseq<.Lab end.> , stmtseq ( . c.put(end); . ) )
: 0
| ( . Lab loop = c.putLab(),t = new Lab(),f = new Lab(); . )

While(cond<.out Item x.>
( . c.put(Op.CBR,x.r,t,f); c.freeReg(x.r); c.put(t); . )
, stmtseq ( . c.put(Op.JMP,loop); c.put(f); . ) )

: 1
-- Store return value into corresponding memory slot
| Ret r ( . Obj o = ((Node)r).obj; . ) ( reg<.out Item x.>)

( . c.storeRet(x.r,o.parSize,o.type.size()); . )
: 2
| Asgn(VAR v , reg<.out Item x.>)

( . Item y = c.newItem((Node)v);
c.put(Op.STW,x.r,y.r,y.off);
c.freeReg(x.r); . )

: 2
-- Discard return value since function is used in statement context
| Fun p ( . Obj o = ((Node)p).obj;

c.pushRet();
c.put(Op.JSR,Lab.funLab(o.name,o.next));
c.discardRet(); . )

: 2
| Funp p ( . Obj o = ((Node)p).obj;

c.pushRet(); c.pushParams(o.parSize); . )
(paramseq<.t.params(o).>) -- argument is a list of parameters

( . c.put(Op.JSR,Lab.funLab(o.name,o.next));
c.discardRet(); . )

: 4
-- Procedure Call
| Proc p ( . Obj o = ((Node)p).obj;

c.put(Op.JSR,Lab.funLab(o.name,o.next)); . )
: 1
| Procp p ( . Obj o = ((Node)p).obj; c.pushParams(o.parSize); . )

(paramseq<.t.params(o).>)
( . c.put(Op.JSR,Lab.funLab(o.name,o.next)); . )

: 2 .
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-- Function Call rewrite rule returns location of return value
fun<.out Item x.> ( . x = null; . )

= Fun p ( . Obj o = ((Node)p).obj;
c.pushRet();
c.put(Op.JSR,Lab.funLab(o.name,o.next));
x = c.popRet(); . )

: 3
| Funp p ( . Obj o = ((Node)p).obj;

c.pushRet();
c.pushParams(o.parSize); . )

(paramseq<.t.params(o).>)
( . c.put(Op.JSR,Lab.funLab(o.name,o.next));

x = c.popRet(); . )
: 4 .

-- Parameters are pushed on stack in reverse order
paramseq<.List<Obj> lst.>

= param<.lst.get(0).> ( . lst.remove(0); . ) [ paramseq<.lst.> ] : 0 .
param<.Obj o.>

= reg<.out Item x.>
( . c.put(Op.STW,x.r,c.SP,c.offset(o)); c.freeReg(x.r); . ) : 1 .

-- Sequence of ELSIF statements
ei fseq<.Lab end.>

= ei f<.end.> [ e i fseq<.end.> ] : 0 .
e i f<.Lab end.> ( . Lab t = new Lab(),f = new Lab(); . )

= Eif (cond<.out Item x.>
( . c.put(Op.CBR,x,t,f); c.freeReg(x.r);

c.put(t); . )
, stmtseq

( . c.put(Op.JMP,end); c.put(f); . ) ) : 1 .

-- Conditionals returning values stored in registers
cond<.out Item x.> ( . x = null; Item a,y; . )

= Eq ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.EQ,x,y); . ) : 2
| Eq ( reg<.out x.> ,imm<.out a.>) ( . c.put(Op.EQI,x,a); . ) : 1
| Eq (imm<.out a.> , reg<.out x.>) ( . c.put(Op.EQI,x,a); . ) : 1
| Leq ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.LEQ,x,y); . ) : 2
| Leq (imm<.out a.> , reg<.out x.>) ( . c.put(Op.GTHI,x,a); . ) : 1
| Leq ( reg<.out x.> ,imm<.out a.>) ( . c.put(Op.LEQI,x,a); . ) : 1
| Geq ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.GEQ,x,y); . ) : 2
| Geq (imm<.out a.> , reg<.out x.>) ( . c.put(Op.LTHI,x,a); . ) : 1
| Geq ( reg<.out x.> ,imm<.out a.>) ( . c.put(Op.GEQI,x,a); . ) : 1
| Lth ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.LTH,x,y); . ) : 2
| Lth (imm<.out a.> , reg<.out x.>) ( . c.put(Op.GEQI,x,a); . ) : 1
| Lth ( reg<.out x.> ,imm<.out a.>) ( . c.put(Op.LTHI,x,a); . ) : 1
| Gth ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.GTH,x,y); . ) : 2
| Gth (imm<.out a.> , reg<.out x.>) ( . c.put(Op.LEQI,x,a); . ) : 1
| Gth ( reg<.out x.> ,imm<.out a.>) ( . c.put(Op.LTHI,x,a); . ) : 1 .
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-- Patterns returning immediate values
imm<.out Item x.> ( . x = null; Item y; . )

= Cnst a ( . x = c.newCnstItem((Node)a); . ) : 0
-- Simple constant folding
| Add (imm<.out x.> ,imm<.out y.>) ( . c.fold(Op.ADD,x,y); . ) : 0
| Sub (imm<.out x.> ,imm<.out y.>) ( . c.fold(Op.SUB,x,y); . ) : 0
| Mul (imm<.out x.> ,imm<.out y.>) ( . c.fold(Op.MUL,x,y); . ) : 0
| Div (imm<.out x.> ,imm<.out y.>) ( . c.fold(Op.DIV,x,y); . ) : 0
| Mod (imm<.out x.> ,imm<.out y.>) ( . c.fold(Op.MOD,x,y); . ) : 0 .

-- Patterns returning values stored in registers
reg<.out Item x.> ( . x = null; Item a,y; . )

= cond<.out x.> : 0
| fun <.out x.> : 0
| imm <.out x.> ( . c.load(x); . ) : 1
| Var v ( . x = c.load(c.newItem((Node)v)); . ) : 2
| Add ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.ADD,x,y); . ) : 2
| Add (imm<.out a.> , reg<.out x.>) ( . c.put(Op.ADDI,x,a); . ) : 1
| Add ( reg<.out x.> ,imm<.out a.>) ( . c.put(Op.ADDI,x,a); . ) : 1
| Sub ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.SUB,x,y); . ) : 2
| Sub ( reg<.out x.> ,imm<.out a.>) ( . c.put(Op.SUBI,x,a); . ) : 1
| Mul ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.MUL,x,y); . ) : 2
| Mul (imm<.out a.> , reg<.out x.>) ( . c.put(Op.MULI,x,a); . ) : 1
| Mul ( reg<.out x.> ,imm<.out a.>) ( . c.put(Op.MULI,x,a); . ) : 1
| Div ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.DIV,x,y); . ) : 2
| Div ( reg<.out x.> ,imm<.out a.>) ( . c.put(Op.DIVI,x,a); . ) : 1
| Mod ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.MOD,x,y); . ) : 2
| Mod ( reg<.out x.> ,imm<.out a.>) ( . c.put(Op.MODI,x,a); . ) : 1 .

end

In order to generate a code generator from the previous specification, Hburg
is invoked with the following parameters (see Section 5.2):

$ hburg −t sl .ir .Kind −p sl .code.risc sl/code/risc/RISC.tpg

The following Java statement invokes the generated code generator, where
the variable root denotes the root of an intermediate representation tree,
and symTab is a reference to a symbol table (see Section 5.3):

List<Str ing> code = s l .code . r i s c .CodeGen.emit (root ,symTab ) ;
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Hburg also emits a Node interface specification as outlined in Figure 5.9. This
interface must be implemented by our intermediate representation Node data
type:

package s l . i r ; // implementation of HBURG generated Node interface
import s l .par s e r .Obj ;
import java . u t i l .EnumMap;
// HBURG generated enumerations
import s l .code . r i s c .Nt ;
import s l .code . r i s c .Rule ;
import s l .code . r i s c .Entry ;

public class Node implements s l .code . r i s c .Node {
public Kind kind ; // VAR,PLUS,ASGN,IF,...
public Node l e f t , r i g h t ; // to the sons
public Node l i n k ; // to the next tree
public Obj obj ; // symbol table entry
public Constant va l ; // for leaves that are constants
// Table holding per Node dynamic programming information
EnumMap<Nt , Entry> tab = new EnumMap<Nt , Entry>(Nt.class ) ;

// create
public Node ( ) { }
public Node (Kind k ) { kind = k ; }
public Node (Kind k , Constant v ) { kind = k ; va l = v ; }

// traverse
public s l .code . r i s c .Node ch i l d1 ( ) { return l e f t ; }
public s l .code . r i s c .Node ch i l d2 ( ) { return r i g h t ; }
public s l .code . r i s c .Node l i n k ( ) { return l i n k ; }

// query
public s l . i r .Kind kind ( ) { return kind ; }
public boolean i s (Nt nt ) { return tab .containsKey ( nt ) ; }
public int co s t (Nt nt ) {

Entry e = tab .get ( nt ) ;
return ( e != null ) ? e. co s t : I n t eg e r .MAX VALUE;

}
public Rule ru l e (Nt nt ) {

Entry e = tab .get ( nt ) ;
return ( e != null ) ? e. r u l e : null ;

}

// store and retrieve dynamic programming information
public Entry put (Nt nt , Entry e ) { return tab .put ( nt , e ) ; }
public Entry get (Nt nt ) { return tab .get ( nt ) ; }

}
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Our code generator specification utilized methods from a Risc Code manipu-
lation class that implements common code generation and register allocation
functionality, and maintains the actual list of target instructions:

package s l .code . r i s c ; // RISC code manipulation class
import stat ic s l .code . r i s c .Reg.∗ ; // register set
import stat ic s l .code . r i s c .Op.∗ ; // instruction set
import stat ic s l .code . r i s c .Mode.∗ ; // addressing modes
import s l .par s e r .Obj ;
import s l .par s e r .Type ;
import s l .par s e r .Kind ;
import s l . i r .Node ;
import s l .code .Lab ;
import java . u t i l .Set ;
import java . u t i l .EnumSet ;
import java . u t i l .L i s t ;
import java . u t i l .LinkedLis t ;
import java . i o .PrintStream ;

public class Code {
stat ic St r ing c l a z z = Code.class .getName ( ) ;
stat ic PrintStream e r r = System. e r r ;
stat ic Reg FP = R29 , SP = R30 ,LNK = R31 ;
stat ic short SIZ = 4 ; // 4 Bytes
Set<Reg> r eg s ; // used registers
List<Str ing> code ; // RISC assembler code

public Code ( ) {
r eg s = EnumSet.noneOf (Reg.class ) ;
code = new LinkedList<Str ing >() ;

}
// ------------------------------------------------- //
void i n i t ( int s i z e ) { put (ADDI, SP ,FP,− s i z e ) ; }
int o f f s e t (Obj o ) { return o.adr ∗ o.type . s i z e ( ) ; }
// ------------------------------------------------- //
Item newCnstItem (Node n) {

Item i = new Item (CNST, n.obj .type ) ; i .v = n.va l ;
return i ;

}
Item newItem (Node n) {

Item i = new Item (VAR, n.obj .type ) ;
i f (n.obj . l e v e l == 0 // global vars

&& n.obj .kind != Kind.PARAM) {
i . o f f = −o f f s e t (n.obj ) ;

} else { // local vars and parameters
i . o f f = (n.obj .kind == Kind.PARAM)

? (2∗ SIZ)+ o f f s e t (n.obj ) // param
: −o f f s e t (n.obj ) ; // local var
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}
i .r = FP; // address is always relative to FP
return i ;

}
// ------------------------------------------------- //
void put ( Object o , Object a , Object b , Object c ) {

code .add ( o +" "+ a +","+ b +","+ c ) ;
}
void put (Op o , Reg a , Reg b , int c ) {

put (o , a , b , I n t eg e r . t oS t r i ng ( c ) ) ;
}
void put (Op o , Item b , Item c ) {

Reg a = getReg ( ) ; put ( o , a , b , c ) ; f reeReg (b.r ) ; f reeReg ( c.r ) ;
b.r = a ;

}
void put (Op o , Lab l ) { code .add ( o +" "+ l ) ; }
void put (Lab l ) { code .add ( l +":" ) ; }
Lab putLab ( ) { Lab l = new Lab ( ) ; put ( l ) ; return l ; }
// ------------------------------------------------- //
void f o l d (Op op , Item x , Item y) {

int a = x.v . i va l , b = y.v . i v a l ;
switch ( op ) {

case ADD: x.v. i v a l = a + b ; break ;
case SUB: x.v. i v a l = a − b ; break ;
case MUL: x.v. i v a l = a ∗ b ; break ;
case MOD: x.v. i v a l = a % b ; break ;
case DIV : x.v. i v a l = a / b ; break ; // division by 0 not handled
default : e r r .p r i n t f ("E:%s: Unknown Op ’%s’!\n" , c l azz , op ) ;

}
}
// ------------------------------------------------- //
Reg getReg ( ) {

for (Reg r : Reg.va lue s ( ) )
i f ( ! r eg s .conta in s ( r ) && ( r .o rd i na l ( ) < R29.o rd i na l ( ) ) ) {

r eg s .add ( r ) ;
return r ;

}
e r r .p r i n t f ("E:%s: Can not allocate register.\n" , c l a z z ) ;
return null ;

}
void f reeReg (Reg r ) { r eg s .remove ( r ) ; }
// ------------------------------------------------- //
Item load ( Item x) {

i f ( x.mode == VAR | | x.mode == CNST) {
Reg r = getReg ( ) ;
i f ( x.mode == VAR) {

put (LDW, r , x.r , x. o f f ) ;
f reeReg (x.r ) ;

} else
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put (ADDI, r ,R0 , x.v ) ;
x.r = r ; x.mode = REG;

} else e r r .p r i n t f ("E:%s: Wrong mode ’%s’!\n" , c l azz , x.mode ) ;
return x ;

}
// ------------------------------------------------- //
// PSH memory slots for parameters on stack
void pushParams ( int s i z e ) { put (ADDI, SP , SP,− s i z e ) ; }
// PSH memory slot for return value on stack
void pushRet ( ) { put (ADDI, SP , SP,−SIZ ) ; }
// POP return value from stack into register
Item popRet ( ) {

Item i = new Item ( ) ;
i .r = getReg ( ) ;
put (LDW, i .r , SP , SIZ ) ; // return value is below SP
discardRet ( ) ;
return i ;

}
// discard return value
void discardRet ( ) { put (SUBI , SP , SP , SIZ ) ; }
// Store return value into allocated memory slot:
// @param register
// @param param size
// @param return value size
void s toreRet (Reg r , int ps i ze , int r s i z e ) {

put (STW, r ,FP, ( 2∗ SIZ)+ps i z e+r s i z e ) ;
f reeReg ( r ) ;

}
// procedure prologue:
// @param frame size
void pro logue ( int f s i z e ) {

put (STW,LNK,SP,−SIZ ) ; // store LNK
put (STW,FP,SP,−2∗SIZ ) ; // store FP
put (ADDI,FP, SP,−2∗SIZ ) ; // new FP = SP - 8 bytes
put (ADDI, SP ,FP,− f s i z e ) ; // adjust SP = FP - fsize

}
// procedure epilogue:
// @param param size
void ep i l o gue ( int p s i z e ) {

put (ADDI, SP ,FP, p s i z e +(2∗SIZ ) ) ; // restore SP
put (LDW,LNK,FP,2∗ SIZ ) ; // restore LNK
put (LDW,FP,FP, SIZ ) ; // restore FP
put (JMP,R0 ,R0 ,LNK) ; // return to caller

}
}
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B.1.3 Risc Assembly Output

The goal was to output Risc assembly code for the introductory example in
Listing B.1, and the automatically generated Risc code generator outputs
the following target code for it:

$Ggt INT INT: ; ------------ Ggt(Int x,Int y): ------------
STW R31 , R30,−4 ; PROLOGUE: PSH LNK,SP,-4...store LNK
STW R29 , R30,−8 ; PROLOGUE: PSH FP,SP,-8...store FP
ADDI R29 , R30,−8 ; PROLOGUE: FP := SP-8...new FP
ADDI R30 , R29,−8 ; PROLOGUE: SP := FP-size(locals)...new SP
LDW R1 , R29 ,16 ; load param y
LDW R2 , R29 ,12 ; load param x
GTH R3 ,R1 ,R2 ; compare: R1 := x > y
CBR R3 , $L1 , $L2 ; if (x > y) then JMP $TRU else JMP $FLS
$L1: ; $TRU
LDW R1 , R29 ,12 ; load param x
STW R1 , R29,−4 ; t := x
LDW R1 , R29 ,16 ; load param y
STW R1 , R29 ,12 ; x := y
LDW R1 , R29,−4 ; load local variable t
STW R1 , R29 ,16 ; y := t
$L2: ; $FLS
LDW R1 , R29 ,12 ; load param x
LDW R2 , R29 ,16 ; load param y
MOD R3 ,R1 ,R2 ; calculate x % y
STW R3 , R29 , 0 ; rest := x % y
$L3: ; $WHILE
LDW R1 , R29 , 0 ; load rest
LTHI R2 ,R1, 0 ; compare: R1 := rest > 0
CBR R2 , $L4 , $L5 ; if (rest > 0) then JMP $BODY else JMP $END
$L4: ; $BODY
LDW R1 , R29 ,16 ; load param y
STW R1 , R29 ,12 ; x := y
LDW R1 , R29 , 0 ; load local variable rest
STW R1 , R29 ,16 ; y := rest
LDW R1 , R29 ,12 ; load param x
LDW R2 , R29 ,16 ; load param y
MOD R3 ,R1 ,R2 ; x % y
STW R3 , R29 , 0 ; rest := x%y
JMP $L3 ; JMP $WHILE
$L5: ; $END
LDW R1 , R29 ,16 ; load param y
STW R1 , R29 ,20 ; store return value into return slot
ADDI R30 , R29 ,16 ; EPILOGUE: SP := FP+size(params)...restore SP
LDW R31 , R29 , 8 ; EPILOGUE: LNK := FP+8...restore LNK
LDW R29 , R29 , 4 ; EPILOGUE: FP := FP+4...restore FP
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JMP R0 ,R0 , R31 ; EPILOGUE: Return to caller
$main: ; ------------ ENTRY POINT ------------
ADDI R30 , R29,−4 ; init SP := FP-size(globals)
ADDI R30 , R30,−4 ; PSH return slot for Ggt() on stack
ADDI R30 , R30,−8 ; PSH param slots for Ggt() on stack
ADDI R1 ,R0,24 ; load 24
STW R1 , R30 , 4 ; store 4 in 1. param slot
ADDI R1 ,R0,18 ; load 18
STW R1 , R30 , 8 ; store 18 in 2. param slot
JSR $Ggt INT INT ; LNK=PC; JMP $Ggt_INT_INT
LDW R1 , R30 , 4 ; load return value
SUBI R30 , R30 , 4 ; POP return value off stack
STW R1 , R29 , 0 ; r := Ggt(24,18)
ADDI R30 , R30,−4 ; PSH param slot for PutInt() on stack
LDW R1 , R29 , 0 ; load local variable r
STW R1 , R30 , 4 ; store R1 in 1. param slot
JSR $PUT INT ; LNK=PC; JMP $PUT_INT

Note that the procedure PutInt on line 14 in Listing B.1 is a library proce-
dure and outputs an integral value to the console. Its implementation is not
presented in this example.
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B.2 Cisc Code Generator

In this section we outline the Ia-32 Cisc target architecture by defining its
register set, available instructions, and the layout of the runtime stack. Fi-
nally we present a complete code generator specification for this architecture
and present the output it produces for our introductory example in List-
ing B.1.

B.2.1 Cisc Architecture Overview

The following Java enumeration outlines the available set of registers:

enum Reg {
Eax ,Ebx ,Ecx ,Edx , Esi , Edi ,
Esp , // stack pointer
Ebp} // base pointer

Registers Esp and Ebp contain the current stack and base pointer which
leaves six general purpose registers for free use. The instruction pointer
register Eip contains the address of the next instruction to be executed.
It can not be accessed directly, but is modified implicitly by control flow
instructions.

Available instructions include integer arithmetic operations, comparison
operations, conditional and unconditional jump operations, as well as run-
time stack management instructions:

enum Op {
// Integer arithmetic

Add,Sub , Imul , Idiv ,Mod,
// Data instructions

Mov, // MOV dst, src - dst := src
Lea , // LEA dst, src - dst := Adr(src)
Cwd, // Convert Word to Double word

// Comparison instruction
Cmp, // CMP a, b (sets EFLAGS register)

// Conditional jump (evaluates EFLAGS register)
Je , Jne , Jl , Jle ,Jg ,Jge , Jz , Jnz ,

// Uconditional jump
Jmp , // JMP c - unconditional jump to c

// Stack management instructions
Push ,Pop ,
Call , // CALL P; PSH EIP; EIP := Adr(P );
Enter , // PSH EBP; EBP := ESP; ESP := ESP-size - setup stack frame
Leave , // ESP := EBP; EBP := POP - release stack fram



Cisc Code Generator 73

Ret} // EIP := POP; ESP := ESP+size(params)

Ia-32 instructions operate on zero or more operands. Some instructions op-
erate on explicitly defined operands whereas some access operands implicitly
(e.g Ia-32 Cwd instruction). Operands can denote immediate values, regis-
ters, or memory locations. We use the following Item data type to represent
operands for the Ia-32 architecture:

public class Item {
Mode mode ; // CNST,ABS,REG,REGREL
Type type ;
Constant v ; // CNST: constant value, ABS: address
Reg r ; // REG,REGREL: register
int o f f ; // REGREL: offset
// create operand
Item ( ) { }
Item (Mode m, Type t ) { mode = m; type = t ; }
// emit operand
public St r ing toS t r i ng ( ) {

switch (mode) {
case CNST: { return v . t oS t r i ng ( ) ; }
case ABS: { return "DS:"+ o f f ; }
case REG: { return r . t oS t r i ng ( ) ; }
case REGREL: { return o f f +" [ "+ r +" ] " ; }
default : { return null ; }

}
}

}

Memory operands can either be accessed by an absolute address (Abs) or
relative to the address stored in a register (RegRel). The Ia-32 architecture
offers an additional indexed addressing mode where an index register mul-
tiplied by a scale factor is added to a base register (e.g. base + (index *
scale)) to form a memory address. Since our input language lacks constructs
that would benefit from indexed memory addressing, our code generator does
no emit such operands.

The runtime stack layout is depicted in Figure B.6 and is similar to the
stack layout of the previously defined Risc architecture (see Section B.1.1).
Register Ebp always contains the address to the beginning of the current
frame, and register Esp always points to the current stack top. We assume
that registers holding the stack and frame pointers are initialized appropri-
ately before execution starts.
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Figure B.6: Cisc runtime stack layout.

B.2.2 Cisc Code Generator Implementation

This section includes a Cisc code generator specification together with an
implementation of a Code manipulation class that includes common code
generation functionality. The implementation of the Node interface emitted
by Hburg is omitted since it is almost identical to the previous Risc example.

generator -- CISC code generator specification
( . import static sl.ir.Kind.*; // node kinds

import sl.parser.Obj;
import sl.parser.SymTab;
import sl.ir.Node;
import sl.code.Lab; // assembler labels
import java.util.List; . )

declarations
( . private static Code c; // target code manipulation

private static SymTab t; // symbol table . )

operators
Add,Sub ,Mul,Div ,Mod,Eq,Leq ,Geq,Lth ,Gth,
Asgn ,Cnst ,Var, If , Ife , Eif ,While ,
Enter ,Ret ,Procp ,Proc ,Funp ,Fun ,Rootd,Root
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rules
-- Start Rule
root <.out List<String> code, SymTab tab .>

( . c = new Code(); t = tab; code = c.code; . )
= ( . c.put(Lab.MAIN); . )
Root ( stmtseq ) : 0
| Rootd (procdefseq ( . c.put(Lab.MAIN); . ) , stmtseq ) : 0 .

-- Procedure Definitions
procdefseq = procdef [ procdefseq ] : 0 .
procdef

= Enter e ( . Obj o = ((Node)e).obj;
c.put(Lab.funLab(o.name,o.next));
c.put(Op.ENTER,o.varSize ,0); . )

( stmtseq )
( . c.put(Op.LEAVE); c.put(Op.RET,o.parSize); . ) : 0 .

-- Statements
stmtseq = stmt [ stmtseq ] : 0 .
stmt

= ( . Lab f = new Lab(); . )
If (cond<.f.> , stmtseq ( . c.put(f); . ) )

: 0
| ( . Lab end = new Lab(); . )

Ife ( ei fseq<.end.> , stmtseq ( . c.put(end); . ) )
: 0
| ( . Lab f = new Lab(),loop = new Lab(); c.put(loop); . )

While(cond<.f.> , stmtseq ( . c.put(Op.JMP,loop); c.put(f); . ) )
: 1
-- Store return value into corresponding memory slot
| Ret r ( . Obj o = ((Node)r).obj; . ) ( reg<.out Item x.>)

( . c.storeRet(x,o.parSize,o.type.size()); . )
: 1
| Ret r ( . Obj o = ((Node)r).obj; . ) (imm<.out Item x.>)

( . c.storeRet(x,o.parSize,o.type.size()); . )
: 1
| Ret r ( . Obj o = ((Node)r).obj; . ) (mem<.out Item x.>)

( . c.storeRet(x,o.parSize,o.type.size()); . )
: 2
-- Free all registers after assignment
| Asgn(mem<.out Item x.> , reg<.out Item y.>)

( . c.put(Op.MOV,x,y); c.freeAllRegs(); . )
: 1
| Asgn(mem<.out Item x.> , imm<.out Item y.>)

( . c.put(Op.MOV,x,y); c.freeAllRegs(); . )
: 1
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-- Discard return value since function is used in statement context
| Fun p ( . Obj o = ((Node)p).obj;

c.pushRet();
c.put(Op.CALL, Lab.funLab(o.name,o.next));
c.discardRet(); . )

: 3
| Funp p ( . Obj o = ((Node)p).obj;

c.pushRet();
c.pushParams(o.parSize); . )

(paramseq<.t.params(o).>) -- argument is a list of parameters
( . c.put(Op.CALL,Lab.funLab(o.name,o.next));

c.discardRet(); . )
: 3
-- Procedure Call
| Proc p ( . Obj o = ((Node)p).obj;

c.put(Op.CALL,Lab.funLab(o.name,o.next)); . )
: 1
| Procp p ( . Obj o = ((Node)p).obj; c.pushParams(o.parSize); . )

(paramseq<.t.params(o).>)
( . c.put(Op.CALL,Lab.funLab(o.name,o.next)); . )

: 2 .

-- Function call rewrite rule returns location of return value
fun<.out Item x.> ( . x = null; . )

= Fun p ( . Obj o = ((Node)p).obj;
c.pushRet();
c.put(Op.CALL,Lab.funLab(o.name,o.next));
x = c.popRet(); . )

: 3
| Funp p ( . Obj o = ((Node)p).obj;

c.pushRet();
c.pushParams(o.parSize); . )

(paramseq<.t.params(o).>)
( . c.put(Op.CALL,Lab.funLab(o.name,o.next));

x = c.popRet(); . )
: 3 .

-- Parameters are pushed on stack in reverse order
paramseq<.List<Obj> l.>

= param<.l.get(0).> ( . l.remove(0); . ) [ paramseq<.l.> ] : 0 .
param<.Obj o.> ( . Item x = null; . )

= imm<.out x.> ( . c.put(Op.MOV,c.offset(o)+"["+ c.SP +"]",x); . ) : 1
| reg<.out x.> ( . c.put(Op.MOV,c.offset(o)+"["+ c.SP +"]",x);

c.freeReg(x); . ) : 1 .
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-- Sequence of ELSIF statements
ei fseq<.Lab end.> = ei f<.end.> [ e i fseq<.end.> ] : 0 .
e i f<.Lab end.> ( . Lab l = new Lab(); . )

= Eif (cond<.l.> , stmtseq ( . c.put(Op.JMP,end); c.put(l); . ) ) : 1 .

-- Conditionals use inverted jump operators and set EFLAGS register
cond<.Lab l.> ( . Item x,y; . )

= Eq ( reg<.out x.> , reg<.out y.>) ( . c.putCond(l,Op.JNE,x,y); . ) : 2
| Eq ( reg<.out x.> , imm<.out y.>) ( . c.putCond(l,Op.JNE,x,y); . ) : 1
| Eq ( reg<.out x.> , mem<.out y.>) ( . c.putCond(l,Op.JNE,x,y); . ) : 3
| Eq (mem<.out x.> , imm<.out y.>) ( . c.putCond(l,Op.JNE,x,y); . ) : 2
| Leq ( reg<.out x.> , reg<.out y.>) ( . c.putCond(l,Op.JG,x,y); . ) : 2
| Leq ( reg<.out x.> , imm<.out y.>) ( . c.putCond(l,Op.JG,x,y); . ) : 1
| Leq ( reg<.out x.> , mem<.out y.>) ( . c.putCond(l,Op.JG,x,y); . ) : 3
| Leq (mem<.out x.> , imm<.out y.>) ( . c.putCond(l,Op.JG,x,y); . ) : 2
| Geq ( reg<.out x.> , reg<.out y.>) ( . c.putCond(l,Op.JL,x,y); . ) : 2
| Geq ( reg<.out x.> , imm<.out y.>) ( . c.putCond(l,Op.JL,x,y); . ) : 1
| Geq ( reg<.out x.> , mem<.out y.>) ( . c.putCond(l,Op.JL,x,y); . ) : 3
| Geq (mem<.out x.> , imm<.out y.>) ( . c.putCond(l,Op.JL,x,y); . ) : 2
| Lth ( reg<.out x.> , reg<.out y.>) ( . c.putCond(l,Op.JGE,x,y); . ) : 2
| Lth ( reg<.out x.> , imm<.out y.>) ( . c.putCond(l,Op.JGE,x,y); . ) : 1
| Lth ( reg<.out x.> , mem<.out y.>) ( . c.putCond(l,Op.JGE,x,y); . ) : 3
| Lth (mem<.out x.> , imm<.out y.>) ( . c.putCond(l,Op.JGE,x,y); . ) : 2
| Gth ( reg<.out x.> , reg<.out y.>) ( . c.putCond(l,Op.JLE,x,y); . ) : 2
| Gth ( reg<.out x.> , imm<.out y.>) ( . c.putCond(l,Op.JLE,x,y); . ) : 1
| Gth ( reg<.out x.> , mem<.out y.>) ( . c.putCond(l,Op.JLE,x,y); . ) : 3
| Gth (mem<.out x.> , imm<.out y.>) ( . c.putCond(l,Op.JLE,x,y); . ) : 2 .

-- Patterns returning immediate values
imm<.out Item x.> ( . Item y; . )

= Cnst a ( . x = c.newCnstItem((Node)a); . ) : 0
-- Constant folding
| Add (imm<.out x.> , imm<.out y.>) ( . c.fold(Op.ADD,x,y); . ) : 0
| Sub (imm<.out x.> , imm<.out y.>) ( . c.fold(Op.SUB,x,y); . ) : 0
| Mul (imm<.out x.> , imm<.out y.>) ( . c.fold(Op.IMUL,x,y); . ) : 0
| Div (imm<.out x.> , imm<.out y.>) ( . c.fold(Op.IDIV,x,y); . ) : 0
| Mod (imm<.out x.> , imm<.out y.>) ( . c.fold(Op.MOD,x,y); . ) : 0 .

-- Patterns returning values stored in memory
mem<.out Item x.> ( . x = null; Item y; . )

= Var a ( . x = c.newItem((Node)a); . ) : 0
| Add (mem<.out x.> , imm<.out y.>) ( . c.put(Op.ADD,x,y); . ) : 2
| Add (mem<.out x.> , reg<.out y.>) ( . c.put(Op.ADD,x,y); . ) : 2
| Sub (mem<.out x.> , imm<.out y.>) ( . c.put(Op.SUB,x,y); . ) : 2
| Sub (mem<.out x.> , reg<.out y.>) ( . c.put(Op.SUB,x,y); . ) : 2 .
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-- Patterns returning values stored in registers
reg<.out Item x.> ( . x = null; Item y; . )

= imm<.out y.> ( . x = c.load(y); . ) : 1
| mem<.out y.> ( . x = c.load(y); . ) : 1
| fun<.out x.> : 0
| Add ( reg<.out x.> , imm<.out y.>) ( . c.put(Op.ADD,x,y); . ) : 1
| Add ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.ADD,x,y); . ) : 2
| Add ( reg<.out x.> , mem<.out y.>) ( . c.put(Op.ADD,x,y); . ) : 3
| Sub ( reg<.out x.> , imm<.out y.>) ( . c.put(Op.SUB,x,y); . ) : 1
| Sub ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.SUB,x,y); . ) : 2
| Sub ( reg<.out x.> , mem<.out y.>) ( . c.put(Op.SUB,x,y); . ) : 3
| Mul ( reg<.out x.> , imm<.out y.>) ( . c.put(Op.IMUL,x,y); . ) : 1
| Mul ( reg<.out x.> , reg<.out y.>) ( . c.put(Op.IMUL,x,y); . ) : 2
| Mul ( reg<.out x.> , mem<.out y.>) ( . c.put(Op.IMUL,x,y); . ) : 3
| Div ( reg<.out x.> , reg<.out y.>) ( . c.putDiv(x,y); . ) : 2
| Div ( reg<.out x.> , mem<.out y.>) ( . c.putDiv(x,y); . ) : 3
| Mod ( reg<.out x.> , reg<.out y.>) ( . c.putMod(x,y); . ) : 2
| Mod ( reg<.out x.> , mem<.out y.>) ( . c.putMod(x,y); . ) : 3 .

end

In order to generate a code generator from the previous specification, Hburg
is invoked with the following parameters (see Section 5.2):

$ hburg −t sl .ir .Kind −p sl .code.cisc sl/code/cisc/CISC.tpg

The following Java statement invokes the generated code generator, where
the variable root denotes the root of an intermediate representation tree,
and symTab is a reference to a symbol table (see Section 5.3):

List<Str ing> code = s l .code . c i s c .CodeGen.emit (root ,symTab ) ;
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The previously defined code generator utilized methods from a Cisc Code
manipulation class that implements common code generation and register
allocation functionality, and maintains the actual list of target instructions:

package s l .code . c i s c ; // CISC code manipulation class
import stat ic s l .code . c i s c .Reg.∗ ; // register set
import stat ic s l .code . c i s c .Op.∗ ; // instruction set
import stat ic s l .code . c i s c .Mode.∗ ; // addressing modes
import s l .par s e r .Obj ;
import s l .par s e r .Type ;
import s l .par s e r .Kind ;
import s l . i r .Node ;
import s l .code .Lab ;
import java . u t i l .EnumSet ;
import java . u t i l .LinkedLis t ;
import java . u t i l .Set ;
import java . u t i l .L i s t ;
import java . u t i l .Stack ;
import java . i o .PrintStream ;

public class Code {
stat ic St r ing c l a z z = Code.class .getName ( ) ;
stat ic PrintStream e r r = System. e r r ;
stat ic Reg FP = EBP,SP = ESP;
stat ic short SIZ = 4 ; // 4 Bytes

Set<Reg> r eg s ; // used registers
Stack<Reg> s p i l l ; // spilled registers
List<Str ing> code ; // CISC ASM code

public Code ( ) {
r eg s = EnumSet.noneOf (Reg.class ) ;
s p i l l = new Stack<Reg>() ;
code = new LinkedList<Str ing >() ;

}
// ------------------------------------------------- //
stat ic int o f f s e t (Obj o ) { return o.adr ∗ o.type . s i z e ( ) ; }
// ------------------------------------------------- //
stat ic Item newCnstItem (Node n) {

Item i = new Item (CNST, n.obj .type ) ; i .v = n.va l ;
return i ;

}
stat ic Item newItem (Node n) {

Item i = new Item ( ) ;
i f (n.obj . l e v e l == 0

&& n.obj .kind != Kind.PARAM) {
i .mode = ABS; i . o f f = o f f s e t (n.obj ) ; // global var

} else { // local
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i .mode = REGREL; i .r = FP;
i . o f f = (n.obj .kind == Kind.PARAM)

? (2∗ SIZ)+ o f f s e t (n.obj ) // param
: −o f f s e t (n.obj ) ; // local var

}
return i ;

}
// ------------------------------------------------- //
void put (Op o , Object a , Object b) { code .add ( o +" "+ a +","+ b ) ; }
void put (Op o , Object a , int b) { put (o , a , S t r ing .valueOf (b ) ) ; }
void put (Op o , Object a , Item b) { put (o , a , ( Object )b ) ; f reeReg (b ) ; }
void put (Op o , Object a ) { code .add ( o +" "+ a ) ; }
void put (Op o , int a , int b) { code .add ( o +" "+ a +","+ b ) ; }
void put (Op o ) { code .add ( o. t oS t r i ng ( ) ) ; }
void put (Lab l ) { code .add ( l +":" ) ; }
void putCond (Lab l ,Op o , Item a , Item b) {

put (Op.CMP, a , b ) ; put ( o , l ) ; f reeReg ( a ) ; f reeReg (b ) ;
}
// ------------------------------------------------- //
Item load ( Item y) {

Item x = null ;
i f ( y.mode == REG) x = y ;
i f ( y.mode == REGREL | | y.mode == CNST | | y.mode == ABS) {

x = new Item (REG, y.type ) ;
x.r = getReg ( ) ;
put (MOV, x , y ) ;
i f ( y.mode == REGREL) freeReg (y.r ) ;

} else
e r r .p r i n t f ("E: %s: load() wrong mode.\n" , c l a z z ) ;

return x ;
}
// ------------------------------------------------- //
void f o l d (Op op , Item x , Item y) {

int a = x.v. i v a l , b = y.v. i v a l ;
switch ( op ) {

case ADD: x.v. i v a l = a + b ; break ;
case SUB: x.v. i v a l = a − b ; break ;
case IDIV : x.v. i v a l = a / b ; break ; // division by zero not handled
case IMUL: x.v. i v a l = a ∗ b ; break ;
case MOD: x.v. i v a l = a % b ; break ;
default : e r r .p r i n t f ("E:%s: Unknown Op ’%s’!\n" , c l azz , op ) ;

}
}
// ------------------------------------------------- //
Reg getReg ( ) {

for (Reg r : Reg.va lue s ( ) )
i f ( ! r eg s .conta in s ( r ) && ( r .o rd i na l ( ) < ESP.o rd i na l ( ) ) ) {

r eg s .add ( r ) ;
return r ;
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}
e r r .p r i n t f ("E:%s: Can not allocate register.\n" , c l a z z ) ;
return null ;

}
boolean getReg (Reg r ) {

i f ( ! r eg s .conta in s ( r ) ) {
r eg s .add ( r ) ;
return true ;

}
e r r .p r i n t f ("E:%s: Can not allocate register.\n" , c l a z z ) ;
return fa l se ;

}
boolean i sF r e e (Reg r ) { return ! r e g s .conta in s ( r ) ; }
void f r e eA l lReg s ( ) { r eg s . c l e a r ( ) ; }
void f reeReg (Reg r ) { r eg s .remove ( r ) ; }
void f reeReg ( Item x) { i f ( x.mode == REG) freeReg (x.r ) ; }
// ------------------------------------------------- //
// PSH slots for parameters on stack
void pushParams ( int s i z e ) { put (ADD,SP,− s i z e ) ; }
// PSH slot for return value on stack
void pushRet ( ) { put (ADD,SP,−SIZ ) ; }
// POP return value from stack into register
Item popRet ( ) {

Item x = new Item ( ) ; x.mode = Mode.REG;
x.r = getReg ( ) ;
put (POP, x.r ) ; // return value is below ESP
return x ;

}
// discard return value below SP
void discardRet ( ) { put (SUB,SP , SIZ ) ; }
// Store return value in allocated slot
void s toreRet ( Item x , int ps i ze , int r s i z e ) {

put (MOV, ( ( 2 ∗ SIZ)+ps i z e+r s i z e ) +" [ "+ FP +" ] " , x ) ; f reeReg (x ) ;
}
// ------------------------------------------------- //
boolean s p i l l e d ( ) { return ! s p i l l .empty ( ) ; }

void pshReg (Reg r ) { s p i l l .push ( r ) ; put (PUSH, r ) ; f reeReg ( r ) ; }

Reg popReg ( ) {
Reg r = s p i l l .pop ( ) ; getReg ( r ) ; put (POP, r ) ; return r ;

}

// EDX contains remainder of division
Item putMod( Item x , Item y) { return putDiv (x , y ,EDX) ; }

// EAX contains quotient of division
Item putDiv ( Item x , Item y) { return putDiv (x , y ,EAX) ; }
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// Division: (EDX : EAX)/opd . . . opd is register or memory location
// - EAX holds quotient
// - EDX holds remainder
private Item putDiv ( Item x , Item y , Reg R) {

i f ( y.mode != REG) { // IDIV m: divisor is in memory
i f ( x.r != EAX) {

i f ( ! i sF r e e (EAX) ) pshReg (EAX) ; // spill EAX
put (MOV,EAX, x.r ) ;

}
i f ( x.r != EDX && ! i sF r e e (EDX)) pshReg (EDX) ; // spill EDX
put (CWD) ; // sign extend EAX to EDX:EAX
put ( IDIV , y ) ; // EAX = IDIV m
i f ( x.r != R) put (MOV, x.r ,R) ;
while ( s p i l l e d ( ) ) popReg ( ) ; // restore EAX,EDX

} else { // IDIV r: divisor in register is put on top of stack
// and we perform an IDIV m. While this is suboptimal
// it simplifies preservation of registers.

i f ( x.r != EAX && y.r != EAX && ! i sF r e e (EAX) )
pshReg (EAX) ; // spill EAX

i f ( x.r != EDX && y.r != EDX && ! i sF r e e (EDX))
pshReg (EDX) ; // spill EDX

put (PUSH, y.r ) ; // store y on top of stack
f reeReg (y.r ) ;
i f ( x.r != EAX) put (MOV,EAX, x.r ) ;
put (CWD) ; // sign extend EAX to EDX:EAX
put ( IDIV , SIZ +" [ "+ EBP +" ] " ) ; // y is on top of stack
put (ADD,EBP, SIZ ) ; // remove y from stack
i f ( x.r != R) put (MOV, x.r ,R) ;
while ( s p i l l e d ( ) ) popReg ( ) ; // restore EAX,EDX

}
return x ;

}
}
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B.2.3 Cisc Assembly Output

The goal was to output Cisc assembly code for the introductory example in
Listing B.1, and the automatically generated Cisc code generator outputs
the following target code for it:

$Ggt INT INT: ; ------------ Ggt(Int x, Int y): ------------
ENTER 8 ,0 ; PROLOGUE: PSH EBP;EBP:=ESP;ESP:=ESP-size(stack frame)
MOV EAX , 16 [EBP] ; load param y
CMP EAX , 12 [EBP] ; compare x > y where y
JLE $L1 ; if (x <= y) then JMP $FLS
MOV EAX , 12 [EBP] ; load param x
MOV −4[EBP] , EAX ; t := x
MOV EAX , 16 [EBP] ; load param y
MOV 12[EBP] , EAX ; x := y
MOV EAX ,−4[EBP] ; load local variable t
MOV 16[EBP] , EAX ; y := t
$L1: ; $FLS
MOV EAX , 12 [EBP] ; load param x
CWD ; double size of operand in register EAX to EDX:EAX
IDIV 16[EBP] ; x / y: EAX contains quotient, EDX contains remainder
MOV EAX , EDX ; store remainder in register EAX
MOV 0[EBP] , EAX ; rest := remainder of x / y
$L3: ; $WHILE
CMP 0[EBP] ,0 ; compare: rest > 0
JLE $L2 ; if (rest <= 0) then JMP $END
MOV EAX , 16 [EBP] ; load param y
MOV 12[EBP] , EAX ; x := y
MOV EAX , 0 [EBP] ; load local variable rest
MOV 16[EBP] , EAX ; y := rest
MOV EAX , 12 [EBP] ; load param x
CWD ; double size of operand in register EAX to EDX:EAX
IDIV 16[EBP] ; x / y
MOV EAX , EDX ; store remainder in register EAX
MOV 0[EBP] , EAX ; rest := remainder of x / y
JMP $L3 ; JMP $WHILE
$L2: ; $END
MOV 20[EBP] ,16[EBP] ; store return value into return slot
LEAVE ; EPILOGUE: ESP:=EBP; EBP:=POP
RET 8 ; EPILOGUE: EIP:=POP; ESP:=ESP-size(params)
$main: ; ------------ ENTRY POINT ------------
ADD ESP ,−4 ; PSH return slot for Ggt() on stack
ADD ESP ,−8 ; PSH param slots for Ggt() on stack
MOV 4[ESP] ,24 ; PSH parameter 24 in 1. param slot
MOV 8[ESP] ,18 ; PSH parameter 18 in 2. param slot
CALL $Ggt INT INT ; PUSH EIP; EIP=Adr($Ggt_INT_INT)
POP EAX ; POP return value off stack
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MOV DS : 0 , EAX ; r := Ggt(24,18)
ADD ESP ,−4 ; PSH param slot for PutInt() on stack
MOV EAX , DS : 0 ; load local variable r
MOV 4[ESP] , EAX ; PUH parameter r in 1. param slot
CALL $PUT INT ; PSH EIP; EIP:=Adr($PUT_INT)

Note that the procedure PutInt on line 14 in Listing B.1 is a library proce-
dure and outputs an integral value to the console. Its implementation is not
presented in this example.
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C
Automatically Generated Code

Source code that is automatically generated by Hburg from a
code generator specification is outlined in this Appendix. The
focus is on representative snippets of code that are responsi-
ble for tiling an Ir tree and for executing semantic actions
associated with tree patterns.

The following code snippets are generated by Hburg from the Cisc spec-
ification defined in Appendix B.2.2.

C.1 Ir Tree Tiling

Operators (terminals) defined in a specification are grouped in sets according
to their arity. For example the EnumSet arity2Set denotes all operators with
two operands (child nodes), and the EnumSet linkSet denotes all operators
that may have link references (e.g. “ADD (reg,reg) [stmt]”). Non terminals
(operators) and rewrite rules are encoded as enumerations prefixed with Nt
and R .

stat ic EnumSet a r i t y0Se t = EnumSet.o f (Cnst ,Fun ,Proc ,Var ) ;
stat ic EnumSet a r i t y1Se t = EnumSet.o f (Enter ,Funp ,Procp ,Ret ,Root ) ;
stat ic EnumSet a r i t y2Se t = EnumSet.o f (Add,Asgn ,Div , Eif ,Eq,Geq,

Gth, If , Ife ,Leq ,Lth ,Mod,
Mul,Rootd,Sub ,While ) ;
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stat ic EnumSet l i n kS e t = EnumSet.o f (Add,Asgn ,Cnst ,Div , Eif ,
Enter ,Fun ,Funp , If , Ife ,
Mod,Mul,Proc ,Procp ,
Ret ,Sub ,Var,While ) ;

// tile(): tile IR by traversing it bottom-up
public stat ic void t i l e ( s l .code . c i s c .Node n ) {

a s s e r t ( n != null ) : "ERROR: tile() - node is null." ;
i f ( a r i t y 0Se t .conta in s ( n .kind ( ) ) ) {

l a b e l 0 ( n ) ; // label leaf nodes
} else i f ( a r i t y 1Se t .conta in s ( n .kind ( ) ) ) {

t i l e ( n . ch i l d1 ( ) ) ;
l a b e l 1 ( n ) ; // label nodes with one child

} else i f ( a r i t y 2Se t .conta in s ( n .kind ( ) ) ) {
t i l e ( n . ch i l d1 ( ) ) ;
t i l e ( n . ch i l d2 ( ) ) ;
l a b e l 2 ( n ) ; // label nodes with two children

} else {
throw new Asse r t i onErro r ("ERROR: tile() - Encountered "+

"undefined node ’"+ n .kind ( ) +"’." ) ;
}
i f ( l i n kS e t .conta in s ( n .kind ( ) ) ) {

s l .code . c i s c .Node l i n k = n . l i n k ( ) ;
i f ( l i n k != null ) t i l e ( l i n k ) ; // tile linked nodes

}
} // END METHOD tile()

// label(): record rule number and non terminal derived
// by node and handle triggered chain rules
private stat ic void label ( s l .code . c i s c .Node n ,

s l .code . c i s c .Nt nt ,
int c ,
s l .code . c i s c .Rule r ) {

i f ( c < n . co s t ( nt ) ) {
n .put ( nt ,new s l .code . c i s c .Entry ( c , r ) ) ;

switch ( nt ) {
case Nt eif : {

label ( n , Nt eifseq , c , R eifseq eif 0 ) ; break ;
} case Nt fun : {

label ( n ,Nt reg , c , R reg fun 13 ) ; break ;
} case Nt imm : {

label ( n ,Nt param , c +1,R param imm 1 ) ;
label ( n ,Nt reg , c +1,R reg imm 15 ) ;
break ;

} case Nt mem : {
label ( n ,Nt reg , c +1,R reg mem 14 ) ; break ;

} case Nt param : {
label ( n ,Nt paramseq , c , R paramseq param 0 ) ; break ;

} case Nt procde f : {
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label ( n ,Nt procdefseq , c , R procdefseq procdef 0 ) ; break ;
} case Nt reg : {

label ( n ,Nt param , c +1,R param reg 0 ) ; break ;
} case Nt stmt : {

label ( n ,Nt stmtseq , c , R stmtseq stmt 0 ) ; break ;
}

}
}

} // END METHOD label()
. . .
// label_0(): label leaf nodes
private stat ic void l a b e l 0 ( s l .code . c i s c .Node n ) {

int c ;
switch ( n .kind ( ) ) {

case Cnst : {
c = 0 ; label ( n ,Nt imm , c , R imm cnst 5 ) ; break ;

} case Fun : {
c = 3 ; label ( n ,Nt stmt , c , R stmt fun 3 ) ;
c = 3 ; label ( n ,Nt fun , c , R fun fun 1 ) ;

break ;
} case Proc : {

c = 1 ; label ( n ,Nt stmt , c , R stmt proc 1 ) ; break ;
} case Var : {

c = 0 ; label ( n ,Nt mem , c ,R mem var 4 ) ; break ;
} default : {

throw new Asse r t i onErro r ("ERROR - label_0(): Unhandeled "+
"Node kind: " + n .kind ( ) ) ;

}
} // END SWITCH

} // END METHOD label_0()
. . .

C.2 Semantic Action Execution

Semantic actions are executed after the Ir tree has been labeled. Each eval
method encodes semantic actions defined in tree patterns that derive a par-
ticular non terminal.

. . .
// eval_fun(): out parameter has type Item
private stat ic Item eva l f un ( s l .code . c i s c .Node n ) {

s l .code . c i s c .Rule r = n . r u l e (Nt fun ) ; // retrieve stored rule
Item x ; // out parameter
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// ( .
x = null ;

// . )
switch ( r ) {

case R fun funp 0 : {
s l .code . c i s c .Node p = n ;
// ( .

Obj o = ( ( Node )p) .obj ;
c.pushRet ( ) ;
c.pushParams ( o.parS i ze ) ;

// . )
eval paramseq ( n . ch i l d1 ( ) , t .params ( o ) ) ;
// ( .

c.put (Op.CALL, Lab.funLab ( o.name , o.next ) ) ;
x = c.popRet ( ) ;

// . )
break ;

} case R fun fun 1 : {
s l .code . c i s c .Node p = n ;
// ( .

Obj o = ( ( Node )p) .obj ;
c.pushRet ( ) ;
c.put (Op.CALL, Lab.funLab ( o.name , o.next ) ) ;
x = c.popRet ( ) ;

// . )
break ;

} default : {
throw new Asse r t i onErro r ("ERROR: Unhandeled semantic "+

" rule - "+ r +"." ) ;
}

}
return x ; // return out parameter

} // END METHOD eval_fun()
. . .
// eval_paramseq(): in parameter has type List<Obj>
private stat ic void eval paramseq ( s l .code . c i s c .Node n , Li s t<Obj> l s t ){

s l .code . c i s c .Rule r = n . r u l e (Nt paramseq ) ;
switch ( r ) {

case R paramseq param 0 : {
eval param ( n , l s t .get ( 0 ) ) ;
// ( .

l s t .remove ( 0 ) ;
// . )
i f ( n . l i n k ( ) != null ) {

eval paramseq ( n . l i n k ( ) , l s t ) ;
}
break ;

} default : {
throw new Asse r t i onErro r ("ERROR: Unhandeled semantic "+
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" rule - "+ r +"." ) ;
}

}
} // END METHOD eval_paramseq()
. . .
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[5] Emmelmann, H., Schröer, F.-W., and Landwehr, R. BEG -
a generator for efficient back ends. In Proceedings of the SIGPLAN
symposium on Interpreters and interpretive techniques (1989), vol. 24,
pp. 227–237.

[6] Fraser, C. W., and Hanson, D. R. Engineering a simple, efficient
code generator generator. ACM Letters on Programming Languages and
Systems 1, 3 (1992), 213–226.

[7] Fraser, C. W., and Proebsting, T. A. Finite-state code genera-
tion. In Proceedings of the ACM SIGPLAN conference on Programming
language design and implementation (1999), pp. 270–280.

[8] Ganapathi, M. Code Generation and Optimization using Attribute
Grammars. PhD thesis, University of Wisconsin, Madison, 1980.

[9] Ganapathi, M., and Fischer, C. N. Description-driven code gen-
eration using attribute grammars. In POPL ’82: Proceedings of the
9th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (New York, NY, USA, 1982), ACM Press, pp. 108–119.



96 Bibliography

[10] Glanville, R. S. A machine independent algorithm for code gener-
ation and its use in retargetable compilers. PhD thesis, University of
California, Berkeley, 1977.

[11] Glanville, R. S., and Graham, S. L. A new method for compiler
code generation. In POPL ’78: Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages (New
York, NY, USA, 1978), ACM Press, pp. 231–254.

[12] Horspool, N. R., and Scheunemann, A. Automating the selection
of code templates. Software - Practice and Experience 15, 5 (1985),
503–514.

[13] Hudak, P., and Fasel, J. H. A gentle introduction to haskell. SIG-
PLAN Not. 27, 5 (1992), 1–52.

[14] Jones, S. L. P., and Santos, A. L. M. A transformation-based
optimiser for Haskell. Sci. Comput. Program. 32, 1-3 (1998), 3–47.

[15] Jones, S. P. Haskell 98 Language and Libraries, The Revised Report.
Cambridge University Press, 2003.

[16] Kang, K. W. A study on generating an efficient bottom-up tree rewrite
machine for JBurg. In Computational Science and Its Applications -
ICCSA 2004 (2004), vol. 3043 of Lecture Notes in Computer Science,
Springer, pp. 65–72.

[17] Knuth, D. E. The Art of Computer Programming, Volume I: Funda-
mental Algorithms. Addison-Wesley, 1968.

[18] Knuth, D. E. The genesis of attribute grammars. In Proceedings of the
international conference on Attribute grammars and their applications
(1990), pp. 76–90.
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