
Unigram Backoff vs. TnT
Evaluating Part of Speech Taggers

Introduction to Computational Linguistics

Igor Boehm

Franckstrasse 7c
4020 Linz Austria
igor@bytelabs.org

Abstract
Automated statistical part-of-speech (POS) tagging has
been a very active research area for many years and is
the foundation of natural language processing systems.
This paper introduces and analyzes the performance of
two part-of-speech taggers, namely the NLTK unigram
backoff tagger and the TnT tagger, a trigram tagger. Ex-
perimental results show that the TnT tagger outperforms
the NLTK unigram backoff tagger. However, the tagging
accuracy of both taggers decreases almost by the same
number when the taggers are tested on a corpus which
differs from the one they were trained on.

1. Introduction
The aim of this paper is to compare and evaluate two
POS taggers, namely a simple NLTK (Natural Language
Toolkit) backoff tagger and a TnT (Trigrams’n’Tags) tag-
ger. The NLTK Backoff Tagger is a simple unigram tag-
ger combined with a simple default tagger, whereas the
TnT tagger is based on trigram statistics coupled with so-
phisticated smoothing approaches.

There is a variety of related works in the area of anal-
ysis, evaluation and refinement of already known natural
language processing methods in order to improve part of
speech taggers. For example [1] analyses and evaluates
several part of speech taggers in order to be able to com-
bine them in a very efficient way to perform POS tagging
of a multilingual parallel corpus.

[3] deals with the problem of analysing and evaluat-
ing the performance of various POS taggers and combi-
nation systems on input text which is not error-free.

These examples show that in many areas of compu-
tational linguistics which are concerned with the process
of automated tagging of various input sources, the task of
evaluating different tagging strategies is inherent.

2. Approach
In our approach we distinguish between a simple 1-gram
tagger, namely our unigram tagger, and a N-gram tagger,

represented by the TnT tagger. Our tagging approaches
heavily rely on statistical methods where the underly-
ing statistical model for the N-gram tagger is a Markov
model.

Markov models represent a class of probabilistic
models that assume that we can predict the probability
of some future unit without looking too far into the past
[5]. Thus the probability of a N-gram tagger to assign a
word a specific part of speech token depends solely on
the previous N − 1 words.

The unigram tagger is based on a much simpler sta-
tistical model where it assigns a tag for each token which
is most likely. In order to calculate probabilities for the
most likely tag for a token, the relative frequencies of
tags assigned to tokens from gold standard data, which is
tagged by humans, is taken into account.

2.1. Unigram Backoff Tagger

As stated in the previous section, the unigram tagger class
used in this experiment implements a simple statistical
tagging method based on relative frequencies of tag to
token assignments:

Unigrams : P̂ (t) =
f(t)
N

In this equation f(t) represents the frequency of tag
t and N represents the total number of tokens in the cor-
pus. The only problem with the unigram tagger occurs if
it encounters a token which has not been seen yet. In that
case it assigns the default tag None to the token. Thus
a regular expression tagger is used as a backoff tagger,
assigning the tag CD to cardinal numbers, and NN to ev-
erything else. So after the tagging process every token
has a valid and meaningful tag.

2.2. TnT Tagger

The TnT Tagger, a N-Gram tagger, is statistically more
sophisticated than the unigram tagger. As mentioned
earlier, the underlying architecture of the TnT Tagger is
based on second order Markov models, thus looking two

words into the past. The states of the model represent
tags, outputs represent the words [4], and transition prob-
abilities depend on the states which consist of pairs of
tags in this case. The TnT tagger is a trigram tagger
where the probability of a tag depends on the previous
two tags:

Trigrams : P̂ (t3|t1, t2) =
f(t1, t2, t3)
f(t1, t2)

One major deficiency of standard N-gram models is
the sparse data problem. That is, the bigram matrix for
any given training corpus is sparse; it is bound to have a
very large number of cases of putative “zero probability
bigrams” that should really have some non-zero probabil-
ity [5].

Since the zero probabilities cause complete sequences
to be set to zero, if for example a new unseen and valid se-
quence has been encountered, some means of smoothing
must be applied in order to make it possible to rank dif-
ferent sequences which would contain a zero probability,
because they just never occurred in the training corpus.

TnT uses linear interpolation of unigram, bigram and
trigram maximum likelihood estimates in order to esti-
mate the trigram probability:

P (t3|t2, t1) = λ1P̂ (t3) + λ2P̂ (t3|t2) + λ3P̂ (t3|t2, t1)

λ1 + λ2 + λ3 = 1, so P represents a valid proba-
bility distribution. The λs are estimated by deleted in-
terpolation where each trigram is successively removed
from the training corpus and best values for the λs are
estimated from all other N-grams in the corpus [4].

Unknown words are handled by a method called suf-
fix analysis. This method works well on inflected lan-
guages and is described in [6]. Instead of assigning each
unknown token a default value (e.g. back-off strategy in
our unigram tagger), morphological and syntactic infor-
mation is extracted in order to determine the most likely
tag for an unknown word. For example, in English, any
multi-syllable word ending in ’-able’ is almost certainly
an adjective [6]. Thus the suffix is a strong indicator for
a specific word class when dealing with unknown words.

3. Data Sets
Both taggers, the unigram tagger and the TnT tagger
have been trained on the same data set consisting of
roughly one million words from the Wall Street Journal
newspaper. The part of speech tags used in the training
sets were hand annotated during the construction of the
Penn Treebank. The Penn Treebank Project annotates
naturally-occurring text for linguistic structure using a tag
set which consists of 36 part of speech tags.

The taggers in these experiment used two sources of
test data in order to make a quantitative comparison fea-
sible:

• Wall Street Journal Newspaper texts.

• Transcripts of radio news broadcasts from the
Boston University Radio News Corpus.

The Wall Street Journal Newspaper is an influential
international daily newspaper published in New York,
primarily covering U.S. and international business and fi-
nancial news and issues. According to the Wikipedia, the
Journal features several distinct sections about:

• U.S. and international corporate news, as well as
political and economic reporting

• coverage of health, technology, media, and market-
ing industries

• international financial markets

• personal investments, careers and cultural pursuits

• personal interests of business readers, including
real estate, travel, and sports

The Boston University Radio News Corpus consists
of over seven hours of speech recorded from seven radio
announcers taken from actual broadcasts.

3.1. Important Data Set Aspects

Since the Boston University Radio News Corpus consists
of recorded radio broadcasts, punctuation information is
not present. Instead of providing punctuation informa-
tion each phrase is annotated with a timestamp. Another
problem is that not every broadcast starts with a capi-
talised word and sometimes contains capitalised phrases
like “In”, in a context where it should definitely not be
capitalised.

An additional interesting fact is that apart from the
timing information recorded, the textual representation
of the broadcasts does not include any cardinal numbers
nor does it contain any special characters like “$”, “λ”,
“#” etc. Numbers and special characters normally used
in printed media are all spelled out in the Boston Univer-
sity Radio News Corpus whereas the Wall Street Journal
News Paper includes many different special characters.

3.2. Data Set Preprocessing

In order to make the data sets digestible for the auto-
mated taggers, various preprocessing steps were neces-
sary. Each tagger needed slightly different preprocessing
of untagged corpora data for the automated tagging pro-
cess.

Figure 1: Class Diagram of Tag Evaluator.

3.2.1. NLTK Backoff Tagger Preprocessing Steps

Since the NLTK backoff tagger used in this experiment
is a 1-gram tagger, and N-gram taggers in general should
not consider context that crosses a sentence boundary, all
NLTK taggers were designed to work with lists of sen-
tences. Thus both corpora had to be parsed into such a
data structure for the NLTK backoff tagger. A tagged cor-
pus is represented by a list of lists of two-tuples, where a
tuple consists of the token and its according tag. The list
which holds the tuples represents a sentence, sentences
themselves are stored in a list structure.

The Boston University Radio Corpus needed some
additional preprocessing since the timing information to-
gether with special header and footer markers had to be
removed. Each utterance which was bounded by header
and footer markers was also suffixed with a period.

3.2.2. TnT Tagger Preprocessing Steps

The file format for untagged text files for TnT requires
that each token of the text occupies its own line, delim-
ited by a linefeed character. The format of tagged files is
similar to that of untagged files. It is extended by adding
an additional column per line where the columns are sep-
arated by any number of white space characters. Thus the
first column represents the tokens and the second column
represents the according tag.

4. Results
4.1. Evaluation Approach

In order to automate the process of preprocessing data,
executing and evaluating the taggers, a Python program
has been implemented. The backoff unigram tagger is
provided by the NLTK Toolkit which is also implemented
in Python. The TnT tagger and evaluator is executed from
within the Python program and only relevant output infor-
mation is extracted.

Since both taggers share some functionalities and are
responsible to carry out the same task, namely automati-
cally tag corpora, an object oriented approach (see figure
1) where common functionality has been extracted into a
base class, has been chosen.

A Tagger object provides many methods for prepro-
cessing and tagging corpora as well as calculating the ac-
curacy of the taggers. Thus the process of tagging an
untagged corpus with the NLTK tagger requires only the
following four lines of Python code:

>>> from Tagger import Tagger, BoTagger
>>> bo = BoTagger()
>>> bo.setPathRadioUntagged(’/somepath’)
>>> bo.tagRadio()

The function printAccuracy() can be used to compute
the accuracy of the tagger. This is done by comparing the
taggers work with a tagged gold standard.

4.2. Results in Detail

Since the training sets for both taggers consisted of data
from the Wall Street Journal Newspaper, one might ex-
pect the taggers to produce a better result than on the
Boston University Radio News Corpus.

Running both taggers on untagged corpora and then
comparing the tagged results with the golden standards
yields the results displayed in table 1.

Tagger Corpus Accuracy
Backoff Boston Radio 72.1%

TnT Boston Radio 84.04%
Backoff Wall Street Journal 83.4%

TnT Wall Street Journal 93.54%

Table 1: Tagger Accuracy.

The accuracy represents the percentage of words the
taggers have tagged correctly. Thus if a tagger has cor-
rectly tagged 14 out of 16 words, its accuracy would be
equal to:

Accuracy =
14
16

= 87.5%

Table 2 displays the total amount of tokens in each
corpora used for this experiment and so we are able to de-
rive the fact that the TnT tagger has tagged 53094 tokens

correctly, and made wrong assumptions on 3666 tokens
when it processed the Wall Street Journal corpora.

Corpus Amount of Tokens
Boston Radio 5872

Wall Street Journal 56760

Table 2: Tokens used in Experiment.

5. Conclusions and Future Work
These results clearly show that our initial assumption that
the taggers would perform better if the test sentences and
the train sentences are from the same genre were correct.
The fact that the tagger accuracy is roughly 10% higher
if it is tested with corpora it was trained on backs this
assumption up.

The TnT tagger tags more tokens correctly, roughly
10% percent more than the NLTK backoff tagger. Thus
the TnT tagger which is based on Markov models com-
bined with some sophisticated smoothing techniques
yields state of the art results [4] and easily outperforms
the simple NLTK backoff tagger.

One interesting observation is that the accuracy of
both taggers decreases by roughly the same amount if
they are tested with other corpora than the ones they were
trained on. The NLTK backoff tagger accuracy decreases
by 11.3% and the TnT tagger accuracy decreases by 9.5%
when compared to the accuracy of tagging the Wall Street
Journal.

This evaluation could be continued by making some
more fine grained tagging error analysis. In this experi-
ment tagging accuracy has been used in order to evalu-
ate taggers. While the accuracy score is useful for this
task, it does not give us any hints about where the tag-
gers make systematic errors which could be eliminated.
Thus it would be interesting to make some further error
analysis by constructing confusion matrices for both tag-
gers. Another approach would be to analyse the context
in which tagging errors occur in order to improve tagging
performance.

This paper shows that a sophisticated statistical tag-
ger as the TnT tagger, shows a good performance if it is
trained well and operates on related corpora.

6. Source Code
The Python code implemented for this paper can be found
in:

$ /home/s0565052/icl

7. References
[1] Lars, R. “Enhancing tagging performance by com-

bining knowledge sources”, Paper accepted for the

symposium Korpusar i forskning och undervisning
(KORFU 99), Vxj University, Sweden, November
11–12, 1999.

[2] Lars, R. “Something Borrowed, Something Blue:
Rule-Based Combination of POS Taggers”, Second
International Conference on Language Resources
and Evaluation, Athens 31 May - 2 June, 2000. 21-
26.

[3] Lin, Xiaofan. “Impact of imperfect OCR on part-of-
speech tagging”, HP Labs Tech Report: HPL-2002-
7R1 , 2002.

[4] Brants, T., “TnT - A Statistical Part-of-Speech Tag-
ger”, In Proceedings of the Sixth Applied Natu-
ral Language Processing Conference ANLP-2000,
April 29 – May 3, 2000 Seattle, WA.

[5] Jurafsky, D., Martin, H. M., “Speech and Language
Processing”, Prentice-Hall, 2003.

[6] Samuelsson, C. “Morphological Tagging Based En-
tirely on Bayesian Inference”, Proceedings of the
9th Nordiska Datalingvistikdagarna (NODALIDA
1993), Stockholm University, Stockholm, Sweden.

