
Rule Basedvs.Statistical
Chunking of CoNLLData Sets

Igor Boehm

Franckstrasse 7c
4020 Linz Austria
igor@bytelabs.org

Abstract

One of the most common operations in language process-
ing are segmentation and labelling [7]. Chunking is a
popular representative of a segmentation process which
aims to segment tagged tokens into meaningful struc-
tures.

This paper compares two chunking approaches,
namely an approach based on regular expression rules
developed by a human, and a machine based chunking
approach based on a N-gram statistical tagger. Experi-
mental results show that the performance of the machine
based chunker is very similar to the results obtained by
the regular expression chunker.

Another interesting fact is that it was considerably
harder to define regular expressions which capture noun
phrases than verb phrases. Obviously this difficulty was
caused by the fact that the structure of noun phrases may
be very complex.

1. Introduction

Chunking is the process of annotating tagged tokens with
structures in a non-hierarchical and non-recursive way.
Since chunkers do not try to analyse complete sentences,
but only try to build “chunks” of words, the rule system
of chunkers is relatively simple, robust, and efficient.

The aim of this paper is to develop and compare two
chunking approaches, namely a rule based method using
a NLTK lite (Natural Language Toolkit) chunker which
is based on regular expressions, and a statistical method
using the part-of-speech taggerTnT (Trigrams’n’Tags).

Since according to [1] shallow parsing can be treated
as POS tagging, it is possible to use the TnT tagger which
is based on trigram statistics to identify chunks based on
frequencies, yielding results comparable with other, more
elaborate approaches.

Chunking, or also referred to as shallow parsing or
chunk parsing, has been a relatively active field in the
last few years. For example theCoNLL-2000 (Confer-
ence on Computational Natural Language Learning) in
Lisbon, Portugal, focused on text chunking, comparing
the performance of various chunking approaches.

[2] is another research which looks at statistical
recognition of noun phrases with a chunk tagger, showing
that a part-of-speech tagger can be (re)used for the task of
partial parsing.

Partial parsing has also been utilized in [3] in order
to ease identification of clauses, where a clause is a se-
quence of words in a sentence that contains a subject and
a predicate.

Probably one of the most important areas in computa-
tional linguistics where shallow parsing is used, would be
the process of information extraction. One reason for this
is that many information extraction algorithms generally
do not extract all the possible information in a text; they
simply extract enough to fill out some sort of template of
required data [5].

2. Approach

As mentioned in the previous section, a shallow parser
based on regular expressions and a N-gram tagger, repre-
sented by the TnT tagger are used in order to chunk the
data set into appropriate structures.

The main difference between these two approaches
is that it is necessary to develop the regular expres-
sion parser by defining efficient regular expression rules,
whereas the TnT tagger can be easily trained on gold
standard chunked data by determining trigram frequen-
cies of chunks. Thus using the TnT tagger for chunking
is a very straight forward task.

The NLTK lite chunk parser operates on corpora
which has been tagged with the appropriate part-of-
speech tags and uses regular expressions over sequences
of part-of-speech tags in order to identify the extent of
text to be chunked.

The quality of the NLTK lite regular expression chun-
ker highly depends on the quality of the regular expres-
sions whereas the quality of the TnT tagger solely de-
pends on the size and quality of the gold standard data.

We are mainly interested in noun and verb phrase
chunking. A noun phrase is a phrase whose head is a
noun or a pronoun, optionally accompanied by a set of
modifiers. These modifiers can be:



• Determiners: Articles (the, a), demonstratives
(this, that), numerals, possessives (my, their), and
quantifiers (some, many)

• Adjectives: thegreenhighlands

• Complements: in the form of adpositional phrases
or relative clauses

A verb phrase consists of a verb, often one or two
complements, and any number of adjuncts.

2.1. Training NLTKon Chunk Data

Developing regular expression rules for theNLTK lite
chunker can be conducted without deep knowledge of the
grammatical properties of the language. This assumption
is based on the results presented in [6] which basically
states that “language novices”, with almost no training
were able to come fairly close to the performance of a
machine-learned annotator, learning a small number of
powerful rules in a short amount of time on a small train-
ing set.

Thus in this experiment the rules have been devel-
oped based solely on the information provided by the
gold standard data. The following iteration of steps has
been repeatedly applied to the training data up until a
point where the addition of new rules did not significantly
improve the performance of the chunker:

• Start with an empty ruleset.

1. Step: Define or refine a rule.

2. Step: Execute chunker on training data.

3. Step: Compare result with previous run.

• RepeatSteps 1 through 3 until the performance
does not improve significantly .

This approach works reasonably well, although there
is a little drawback which results from the size of the
training set. The training data consists of211.727 phrases
which means that the steps required in the process of test-
ing the performance of a new rule, namely chunking and
evaluating training data, takes quite a long time.

Thus the application and evaluation of regular expres-
sion rules has been conducted on a subset of the train-
ing data consisting of1.000 phrases, because [6] clearly
shows that it will not significantly decrease the perfor-
mance of the resulting regular expression based chunker
if it is trained on a small training set.

2.2. Training TnT on Chunk Data

Since we are labeling each word with a particular chunk
label, we may treat chunking in the same way as tagging
and apply a statistical tagger like TnT for this task. The

application of TnT consists of two steps [4], namely pa-
rameter generation and tagging.

The first step creates model parameters from a train-
ing corpus which are applied to new text during step two
when the actual tagging is performed.

Tools for creating the necessary model parameters
from a training corpus are already implemented in TnT,
thus the development cycle of creating a chunker based
on TnT is quite short and straight forward.

3. Data Set

The training and test data which is available for this task
consists of partitions of the Wall Street Journal (WSJ)
corpus. The Wall Street Journal Newspaper is an influen-
tial international daily newspaper published in New York,
primarily covering U.S. and international business and fi-
nancial news and issues.

Sections 15-18 of WSJ are used as training data and
section 20 as test data. Table 4 displays the amount of
tokens present in each data set used for this experiment.

3.1. Important Data Set Aspects

Both the training and test data has already been tagged
with the appropriate POS and IOB (Inside Outside Begin)
tags. The IOB notation encodes the name of the chunk
type, for example I-NP for noun phrase words and I-VP
for verb phrase words, and it also encodes if the chunk
is a B-chunk for the first word of the chunk, and I-chunk
for each other word in the chunk. Every word which is
labeled with an “O” is outside of any chunk.

What makes the WSJ corpus interesting is the amount
of special and punctuation characters which is used. Spe-
cial characters like “$”, “λ”, “#” etc. are treated just
like other part of speech tags, which means that they can
appear at the beginning or within a chunk. Punctuation
characters are always treated as being outside of chunks
and labeled with an “O”.

3.2. Data Set Preprocessing

3.2.1. NLTK Backoff Tagger Preprocessing Steps

Because of good support of theCoNLL data set inNLTK
lite, it was not necessary at all to preprocess the data prior
to chunking or evaluation.

3.2.2. TnT Tagger Preprocessing Steps

The file format for untagged text files for TnT requires
that each token of the text occupies its own line, delim-
ited by a linefeed character. The format of tagged files is
similar to that of untagged files. It is extended by adding
an additional column per line where the columns are sep-
arated by any number of white space characters. Thus the
first column represents the tokens and the second column
represents the according tag.



Since we want to train TnT to tag words with either
NP or VP IOB tags, it was necessary to remove the POS
tags from the originalCoNLL training and test data to
produce a gold standard digestible for TnT.

In order to be able to evaluate the chunking results
produced by TnT, aPerl script provided byCoNLLhas
been used. This script expects its input to contain lines
with the following four symbols:

1. The current word.

2. Its part-of-speech tag.

3. The chunk tag according to the corpus.

4. The predicted chunk tag.

Because the result of the TnT tagger does not com-
ply with this format, it had to be merged with the golden
standard in order to include the correct information for
the evaluation process.

4. Results

4.1. Evaluation Approach

The performance of our chunkers is evaluated in terms of
precision, recall andF-measure.

• Precision: The percentage of correct guessed
chunks:

P =
|reference ∩ test|

test

• Recall: The percentage of correct chunks were
guessed:

R =
|reference ∩ test|

reference

• F-Measure: The harmonic mean of precision and
recall:

Fα=0.5 =
1

(α/P + (1 − α)/R)

• F-Rate: According toCoNNLevaluator:

F =
2 ∗ P ∗ R

R + P

With these measures we are basically trying to eval-
uate how well the chunked text matches the golden stan-
dard.

Precision Recall F-Measure

NP 79.3% 80.1% 79.7%
VP 76.5% 84.4% 80.3%

Table 1:NLTK: NP and VP Chunker Performance.

Precision Recall F-Measure

NP 79.59% 82.35% 80.95%
VP 78.36% 76.76% 77.55%

Table 2:TnT: NP and VP Chunker Performance.

4.2. Results in Detail

Running theNLTK lite chunker on unchunked corpora
and then comparing the output with the golden standard
yields the results displayed in table 1.

Table 2 shows the results achieved by the TnT tag-
ger when it was trained on NP chunks, and then on VP
chunks. Since the process of training the TnT tagger was
very straight forward, a combined NP and VP chunker
has also been tested and table 3 yields the results of that
experiment.

Precision Recall F-Measure

NP 79.89% 82.87% 81.36%
VP 76.79% 78.97% 77.86%

Overall 79.05% 81.81% 80.41%

Table 3:TnT: Combined NP/VP Chunker Performance.

Table 4 displays the total amount of tokens in each
data set used for this experiment.

These results clearly show that the performance of the
NLTK lite chunker is comparable to the results produced
by TnT. TheNLTKlite chunker even outperforms the TnT
VP chunker with regards torecall andF-measure.

5. Conclusions and Future Work

These results back up our initial assumptions that the sta-
tistical chunker is comparable with more elaborate ap-
proaches in terms of performance as stated in [1]. In our
case the more elaborate approach is represented by a set
of hand crafted regular expressions which are matched
against sequences of POS tags.

We have also backed up the results of [6] by develop-
ing regular expression rules based only on their impact on
values like recall, precision and F-measure, without look-
ing at the underlying grammatical properties of chunks.

Another interesting aspect is the amount of time and
effort necessary to produce a reasonable chunker. Train-
ing TnT for the task of chunking was much easier and
straight forward than having to develop regular expres-



CoNLLData Set Amount of Tokens

Training data 211727
Test data 47377

Table 4:Tokens used in Experiment.

sion rules.
Also the process of developing and refining regular

expression rules for noun phrases was much more time
consuming than for verb phrases. Obviously this diffi-
culty was caused by the fact that some noun phrases can
have a fairly complex structure, making it hard to capture
with regular expressions.

This evaluation could be improved by putting more
focus on the underlying grammatical properties of the
language in the process of generating regular expression
rules for theNLTKchunker, in order to investigate if the
performance of such rules can significantly outperform a
machine based learning approach.

6. Source Code

ThePythoncode implemented for this paper can be found
in:

$/home/s0565052/icl

The results of the TnT tagger can be found in:

$/home/s0565052/icl/src/tntEVALUATION

7. References

[1] Miles, O. “Shallow Parsing as Part-of-Speech Tag-
ging”, Proceedings of CoNLL-2000 and LLL-2000,
Lisbon, Portugal, 145–147, 2000.

[2] Wojciech, S. and Thorsten, B. “Chunk Tagger - Sta-
tistical Recognition of Noun Phrases”, ESSLLI-98
Workshop on Automated Acquisition of Syntax and
Parsing, Saarbrcken, 1998.

[3] X. Carreras and L. arquez and V. Punyakanok
and D. Roth “Learning and Inference for Clause
Identification”, Learning and Inference for Clause
Identification. In Proceedings of the 14th ECML,
Helsinki, Finland, 2002.

[4] Brants, T., “TnT - A Statistical Part-of-Speech Tag-
ger”, In Proceedings of the Sixth Applied Natu-
ral Language Processing Conference ANLP-2000,
April 29 – May 3, 2000 Seattle, WA.

[5] Jurafsky, D., Martin, H. M., “Speech and Language
Processing”, Prentice-Hall, 2003.

[6] Eric, B., Grace, N., “Man vs. Machine: A Case
Study in Base Noun Phrase Learning”, Proceed-
ings of ACL’99, University of Maryland, MD, USA,
1999.

[7] Ewan, Klein, Steven, Bird, Edward, Loper,
“NLTK Lite Tutorials: Chunk Parsing”,
http://nltk.sourceforge.net/lite/
doc/en/chunk.html , 16-11-2005.


