
Computer Science 3

Compiling Techniques

Samson Abramsky

samson@dcs

1

See http://www.cs.princeton.edu/faculty/appel/modern for full details of those terms and

conditions with respect to limitations on their use and dissemination.

2

Why study compilers?

• To learn how to use them well.

• To learn how to write them.

• To illuminate programming language design.

• As an example of a large software system.

• To motivate interest in formal language theory.

Course bias

• Not a theory course.

• Not a hardware/assembler course.

• Not a superficial survey of techniques.

• Concentrate on important ideas.

• Examine the ideas in implementations.

Course text

• There are two editions of the course text; and there are three
versions of each of them!

• You can choose either

– “Modern Compiler Implementation”, by Andrew Appel,
Cambridge University Press, 1998.
Price £27.95.

– or “Modern Compiler Implementation: Basic Techniques”,
by Andrew Appel, Cambridge University Press, 1997.
Price £19.95.

• There are versions for the languages C, ML and Java.

• We study Part One of the book. This is common to both editions.

3

Coursework

• Choose an implementation language (C, ML, Java, C++, . . .)

• Obtain the (partial) source code and the Tiger’99 Reference Manual
from the CS3 Compiling Techniques Web page.

• Working in groups or otherwise, develop a compiler for Tiger’99
as described in the reference manual.

• Groups can use the Compiling Techniques group accounts (with
the user ids ct00, ct01, ct02, . . .). Mail support@dcs telling
them the names of the people in your group.

• Submit source, SUN Solaris executable and documentation (a
README file)

• Deadline: End of Week 9 of this term.

Tiger and Tiger’99

• Tiger ’99 is a dialect of the Tiger language described in Andrew
Appel’s textbook “Modern Compiler Implementation”.

• Although Tiger ’99 has many features in common with Tiger it
adds some new syntax and concepts while taking away others.
Thus it is neither a subset nor a superset of Tiger.

• However, the skills which are needed to know how to compile the
language are those which can be learned from careful study of
Appel’s textbook.

4

2. Lexical analysis, LEX; basic parsing.

3. Predictive parsing; concepts of LR parsing.

4. YACC; Abstract syntax, semantic actions, parse trees.

5. Semantic analysis, tables, environments, type-checking.

6. Activation records, stack frames, variables escaping.

7. Intermediate representations, basic blocks and traces.

8. Instruction selection, tree patterns and tiling.

9. Liveness analysis, control flow and data flow.

Lexical analysis

• The first phase of compilation.

• White space and comments are removed.

• The input is converted into a sequence of lexical tokens.

• A token can then be treated as a unit of the grammar.

Lexical tokens

Examples:
foo (ID), 73 (INT), 66.1 (REAL), if (IF), != (NEQ),
((LPAREN),) (RPAREN)

Non-examples:
/* huh? */ (comment),
#define NUM 5 (preprocessor directive),
NUM (macro)

5

{if (!strncmp (s, "0.0", 3))
return 0.;

}

⇓
VOID ID(match0) LPAREN CHAR STAR

ID(s) RPAREN LBRACE IF LPAREN

BANG ID(strncmp) LPAREN ID(s)
COMMA STRING(0.0) COMMA NUM(3)
RPAREN RPAREN RETURN REAL(0.0)
SEMI RBRACE EOF

LEX disambiguation rules

Longest match:
The longest initial substring of the input that can match any
regular expression is taken as the next token.

Rule priority:
For a particular longest initial substring, the first regular expres-
sion that can match determines its token type.

This means that the order of writing down the regular expression
rules has significance.

if0 → ID(if0) not IF NUM(0)
if → IF not ID(if)

Context-free grammars

A language is a set of strings ; each string is a finite sequence of symbols
taken from a finite alphabet . A context-free grammar describes a
language. A grammar has a set of productions of the form

symbol → symbol · · · symbol

6

where there are zero or more symbols on the right-hand side. Each
symbol is either terminal , meaning that it is a token from the alphabet
of strings in the language, or non-terminal , meaning that it appears on
the left-hand side of a production. No terminal symbol can ever appear
on the left-hand side of a production and there is only one non-terminal
there (together these justify the name context-free). Finally, one of
the productions is distinguished as the start symbol of the grammar.

A grammar for straight-line programs

1. S → S ; S (compound statements)

2. S → id := E (assignment statements)

3. S → print(L) (print statements)

4. E → id (identifier usage)

5. E → num (numerical values)

6. E → E + E (addition)

7. E → (S , E) (comma expressions)

8. L→ E (singleton lists)

9. L→ L , E (non-singleton lists)

Examples: a := 7 ; b := c + (d := 5 + 6, d)

Non-examples: a := 7 ; b := (d, d) print ()

7

A derivation

S
S ; S
S ; id := E
id := E ; id := E
id := num ; id := E
id := num ; id := E + E
id := num ; id := E + (S , E)
id := num ; id := id + (S , E)
id := num ; id := id + (id := E , E)
id := num ; id := id + (id := E + E , E)
id := num ; id := id + (id := E + E , id)
id := num ; id := id + (id := num +E , id)
id := num ; id := id + (id := num + num , id)

Ambiguity

Consider the following straight-line program.

a := b + b + c

• Does the right-hand side denote (b+ b) + c or b+ (b+ c)?

• Does it matter?

8

ence and associativity (left or right). The following grammar describes
a language with expressions made up of terms and factors .

1. E → E + T

2. E → E − T
3. E → T

4. T → T ∗ F
5. T → T / F

6. T → F

7. F → id

8. F → num

9. F → (E)

Parsing by recursive descent

Consider the following grammar.

1. S → if E then S else S

2. S → begin S L

3. S → print E

4. L→ end

5. L→ ; S L

6. E → num = num

This grammar can be parsed using a simple algorithm which is known
as recursive descent . A recursive descent parser has one function for
each non-terminal and one clause for each production.

9

extern enum token getToken(void);

enum token tok;
void advance() {tok=getToken();}
void eat(enum token t) {if (tok==t) advance(); else error();}

void S(void) {switch(tok) {
case IF: eat(IF); E(); eat(THEN); S();

eat(ELSE); S(); break;
case BEGIN: eat(BEGIN); S(); L(); break;
case PRINT: eat(PRINT); E(); break;
default: error();
}}

void L(void) {switch(tok) {
case END: eat(END); break;
case SEMI: eat(SEMI); S(); L(); break;
default: error();
}}

void E(void) { eat(NUM); eat(EQ); eat(NUM); }

When recursive descent fails

S → E $ E → E + T T → T ∗ F F → id
E → E − T T → T / F F → num
E → T T → F F → (E)

void S(void) { E(); eat(EOF); }
void E(void) {switch(tok) {

case ?: E(); eat(PLUS); T(); break;
case ?: E(); eat(MINUS); T(); break;
case ?: T(); break;
default: error();
}}

void T(void) {switch(tok) {
case ?: T(); eat(TIMES); F(); break;
case ?: T(); eat(DIV); F(); break;
case ?: F(); break;
default: error();
}}

10

First and follow sets

Grammars consist of terminals and non-terminals . With respect to a
particular grammar, given a string γ of terminals and non-terminals,

• nullable(X) is true if X can derive the empty string

• FIRST(γ) is the set of terminals that can begin strings derived
from γ

• FOLLOW(X) is the set of terminals that can immediately follow X .
That is, t ∈ FOLLOW(X) if there is any derivation containing Xt.
This can occur if the derivation contains XYZt where Y and Z
both derive ε.

Computing FIRST, FOLLOW and nullable

Initialise FIRST and FOLLOW to all empty sets
Initialise nullable to all false.
for each terminal symbol Z

FIRST [Z]← {Z}
repeat

for each production X ← Y1Y2 · · ·Yk
for each i from 1 to k, each j from i+ 1 to k

if all the Yi are nullable
then nullable [X]← true

if Y1 · · ·Yi−1 are all nullable
then FIRST [X]← FIRST [X] ∪ FIRST [Yi]

if Yi+1 · · ·Yk are all nullable
then FOLLOW [Yi]← FOLLOW [Yi] ∪ FOLLOW [X]

if Yi+1 · · ·Yj−1 are all nullable
then FOLLOW [Yi]← FOLLOW [Yi] ∪ FIRST [Yj]

until FIRST, FOLLOW and nullable did not change in this iteration

11

Constructing a predictive parser

• The information which we need can be coded as a two-dimensional
table of productions, indexed by non-terminals and terminals.
This is a predictive parsing table.

• To construct the table, enter the production X → γ in column T
of row X for each T ∈ FIRST(γ). Also, if γ is nullable, enter the
production in column T of row X for each T ∈ FOLLOW(X).

• An ambiguous grammar will always lead to some locations in the
table having more than one production.

• A grammar whose predictive parsing table has at most one produc-
tion in each location is called LL(1). This stands for Left-to-right
parse, leftmost derivation, 1-symbol lookahead .

Detecting ambiguity with a parsing table

Z → d Y → X → Y
Z → XYZ Y → c X → a

nullable FIRST FOLLOW
X true {a, c} {a, c, d}
Y true {c} {a, c, d}
Z false {a, c, d}

a c d

X
X → a
X → Y

X → Y X → Y

Y Y → Y →
Y → c

Y →

Z Z → XYZ Z → XYZ
Z → d

Z → XYZ

12

productions cannot be LL(1).

S → E $ E → E + T T → T ∗ F F → id
E → E − T T → T / F F → num
E → T T → F F → (E)

We can transform this grammar as shown below.

S → E $ E → T E ′ T → F T ′ F → id
F → num

E ′ → + T E ′ T ′ → ∗ F T ′ F → (E)
E ′ → − T E ′ T ′ → / F T ′

E ′ → T ′ →

Left factoring a grammar

Left recursion interferes with predictive parsing. A similar problem
occurs when two productions for the same non-terminal start with the
same symbols. For example:

S → if E then S else S
S → if E then S

In such a case we can left-factor the grammar to account for the
optional else statement.

S → if E then S X

X →
X → else S

13

case ID:
case NUM:
case LPAREN: F(); Tprime(); break;
default: printf("expected id, num or (")

}}

int Tprime_follow [] = {PLUS, MINUS, RPAREN, EOF, -1};

void Tprime(void) { switch (tok) {
case PLUS: break;
case MINUS: break;
case TIMES: eat(TIMES); F(); Tprime(); break;
case DIV: eat(DIV); F(); Tprime(); break;
case RPAREN: break;
case EOF: break;
default: printf("expected +, -, *, /,) or EOF");

skipto(Tprime_follow);
}}

LR Parsing

• The weakness of LL(k) parsing techniques is that they must predict
which production to use, having seen only the first k tokens of the
right-hand side.

• LR(k) parsing postpones the decision until it has seen the entire
right-hand side of the production (and k more tokens beyond).

• The name LR(k) means Left-to-right parse, rightmost derivation,
k-token lookahead .

• The parser has a stack and an input. The first k tokens of the
input are the lookahead . The parser performs two kinds of actions:

Shift: move the first input token to the top of the stack;
Reduce: Choose a grammar rule X → A B C; pop C, B, A off

the stack, push X onto the stack.

• Shifting the end-of-file marker is called accepting .

14

LR transition tables

• LR parsers decide when to shift and when to reduce by consulting
a transition table which is a two-dimensional array with rows
indexed by state number and columns indexed by the terminals
and non-terminals of the grammar.

• Elements in the table are labeled with four kinds of actions.

Shift(n) Shift into state n;
Goto(n) Goto state n;
Reduce(k) Reduce by rule k; and
Accept Acceptable input.

Errors are denoted by blank entries in the table.

• An LR parser could scan the stack for each token to determine
which state it is in but a useful optimisation is to record the state
reached for each stack element. The stack now contains pairs of
a terminal and a state or a non-terminal and a state.

An LR parsing algorithm

• Look up the top stack state and input symbol to get action;

• If action is:

Shift(n): Advance input one token; push n onto stack.
Reduce(k):

– Pop stack as many times as the number of symbols on the
right-hand side of rule k;

– Let X be the left-hand-side symbol of rule k;
– In the state now on top of the stack, look up X to get

“Goto(n)”;
– Push n on top of stack.

Accept: Stop parsing, report success.
Error: Stop parsing, report failure.

15

Transition table generation

• An LR(k) parser uses the contents of its stack and the next k
tokens of the input to decide which action to take. In practice the
value of k is 1

– because transition tables for k > 1 would be huge; and
– most programming languages have LR(1) grammars.

• To construct a transition table for an LR(0) parser we need to
explore the possible states of the parser. For this, we use the
notion of an item (such as an LR(0) item or an LR(1) item). An
item is a grammar rule, combined with a dot which indicates a
position in its right hand side. For example:

S′ → .S$

A state is just a set of items.

An example of LR(0) items and states

S′ → S$ S → (L) L→ S
S → x L→ L, S

We build up states starting from the start symbol S′. There are nine
states in total and the first six are these.

S′ → .S$
S → .x
S → .(L)

1

S → (.L)
L → .L, S
L → .S
S → .(L)
S → .x

3

S → (L.)
L → L., S

5

S → x.
2

S′ → S.$
4

S → (L).
6

16

Closure(I) =
repeat

for any item A→ α.Xβ in I
for any production X → γ
I ← I ∪ { X → .γ }

until I does not change
return I

/*Moving past a non-terminal X */
Goto(I , X) =

set J to the empty set
for any item A→ α.Xβ in I

add A→ αX.β to J
return Closure(J)

LR(0) parser construction

/*Compute the states traversed (T) and edge set (E) */
Initialize T to {Closure({S′ → .S$})}
Initialize E to the empty set.
repeat

for each state I in T
for each item A→ α.Xβ in I

let J be Goto(I , X)
T ← T ∪ {J}
E ← E ∪ {I X→ J}

until E and T did not change in this iteration

/*Compute the set of LR(0) reduce actions (R) */
R← {}
for each state I in T

for each item A→ α. in I
R← R ∪ {(I,A→ α)}

17

– if X is a terminal, we put Shift(J) at position (I,X)
– if X is a non-terminal, we put Goto(J) at position (I,X)

• For each state I containing S′ → S.$ we put Accept at (I, $).

• For each state I containing A→ γ. (production n with the dot at
the end), we put a Reduce(n) action at (I, Y) for every token Y .

Parsers which are better than LR(0)

SLR (Simple LR) parsers

/*Compute the set of SLR reduce actions (R) */
R← {}
for each state I in T

for each item A→ α. in I
for each token X in FOLLOW(A)
R← R ∪ {(I,X,A→ α)}

LR(1) parsers

/*Items now include a one-symbol lookahead */
R← {}
for each state I in T

for each item (A→ α., z) in I
R← R ∪ {(I, z, A→ α)}

18

Using parser generators

• The task of constructing LR(1) and LALR(1) parsing tables is
simple enough to be automated.

• Many such parser generator tools exist (Yacc, Bison, ML-Yacc,
CUP, JavaCC, . . .)

• Grammar specifications are divided into sections (the following is
for Yacc)

parser declarations
%%
grammar rules
%%
programs

• The grammar rules are productions of the following form.

exp : exp PLUS exp { semantic action }

An example grammar

1. P → L (programs)

2. S → id := id (assignment statements)

3. S → while id do S (while loops)

4. S → begin L end (compound statements)

5. S → if id then S (if-then statements)

6. S → if id then S else S (if-then-else statements)

7. L→ S (singleton statement list)

8. L→ L ; S (non-singleton statement list)

19

Implementation in Yacc/Bison

%{
int yylex(void);
void yyerror(char *s) { EM_error(EM_tokPos, "%s", s); }
%}
%token ID WHILE BEGIN END DO IF THEN ELSE SEMI ASSIGN
%start prog
%%

prog: stmlist

stm : ID ASSIGN ID
| WHILE ID DO stm
| BEGIN stmlist END
| IF ID THEN stm
| IF ID THEN stm ELSE stm

stmlist : stm
| stmlist SEMI stm

Implementation in CUP

terminal ID, WHILE, BEGIN, END, DO, IF, THEN, ELSE, SEMI, ASSIGN;

non terminal prog, stm, stmlist;

start with prog;

prog ::= stmlist;

stm ::= ID ASSIGN ID
| WHILE ID DO stm
| BEGIN stmlist END
| IF ID THEN stm
| IF ID THEN stm ELSE stm;

stmlist ::= stm
| stmlist SEMI stm;

20

– A shift-reduce conflict is a choice between shifting and
reducing.

– A reduce-reduce conflict is a choice of reducing by two
different rules.

• Two conventions apply:

– Resolve shift-reduce conflicts by shifting.
– Resolve reduce-reduce conflicts by using the rule which

appears earliest in the grammar.

• Causes of conflicts can be found by examining the verbose descrip-
tion file.

LR parsing of ambiguous grammars

Many programming languages have grammar rules such as

S → if E then S else S
S → if E then S

which allow programs such as

if a then if b then s1 else s2

Such a program could be understood in two ways

1. if a then { if b then s1 else s2 }

2. if a then { if b then s1 } else s2

The grammar leads to a shift/reduce conflict, resolved by shifting.

21

ambiguity with precedence directives.

E → int E → E + E E → E ∗E E → E − E E → −E

%{ declarations of yylex and yyerror %}
%token INT PLUS MINUS TIMES UMINUS
%start exp

%left PLUS MINUS /* Left associativity. */
%left TIMES /* Left associativity, higher precedence. */
%left UMINUS /* Left associativity, highest precedence. */
%%

exp : INT
| exp PLUS exp /* By default, a rule has the precedence */
| exp MINUS exp /* of its last (i.e. rightmost) token. */
| exp TIMES exp
| MINUS exp %prec UMINUS /* Explicitly setting precedence. */

Non-associative operators

• Some programming languages consider it unnecessarily confusing
to allow some operators to be either left associative or right asso-
ciative. Thus a− b − c might be considered to be grammatically
ill-formed.

• The Pascal programming language disallowed the <= operator
on Booleans from being associative. The ordering which Pascal
placed on Booleans was false < true. Because the operator is
non-associative, the following Boolean expression is illegal.

false <= false <= false

• Non-associativity can be specified with the %nonassoc directive.

22

Syntax versus semantics

The following grammar describes a language with assignment and
arithmetic (AE) and Boolean expressions (BE).

S → id := AE AE → AE + AE BE → BE or BE
S → id := BE AE → id BE → BE and BE

BE → AE = AE
BE → id

The problem with a grammar such as this is that when the parser sees
an identifier it does not know whether it is an arithmetic variable or a
Boolean variable. The solution is to defer this kind of analysis to the
“semantic” phase of the compiler. A more appropriate grammar is:

S → id := E E → E and E E → E = E
E → id E → E or E E → E + E

Semantic actions

• The semantic actions of a parser operate on the phrases which
have been recognised as being produced by the productions of the
grammar.

• Each terminal and non-terminal can be associated with its own
type of semantic value, which must match the type that the lexer
returns with that token.

• For a rule A→ B C D, the semantic action must return a value
whose type is the one associated with A. It can build this from
the values associated with B, C and D.

23

A simple interpreter in Yacc/Bison

%{ declarations of yylex and yyerror %}
%union {int num; string id;}
%token <num> INT
%token <id> ID
%type <num> exp
%start exp

%left PLUS MINUS
%left TIMES
%left UMINUS
%%

exp : INT {$$ = $1;}
| exp PLUS exp {$$ = $1 + $3;}
| exp MINUS exp {$$ = $1 - $3;}
| exp TIMES exp {$$ = $1 * $3;}
| MINUS exp %prec UMINUS {$$ = -$2;}

Parse trees

• Compilers do not evaluate programs as interpreters do. A compiler
subjects the program text to semantic analysis and then translates
into a lower-level language. A parse tree is used to store the
program text for analysis and translation purposes.

• A parse tree for the concrete syntax of the language would have
exactly one leaf for each token of the input and one internal node
for each grammar rule reduced during the parse.

• A parse tree for the abstract syntax retains the important content
from the concrete parse tree but dispenses with the punctuation
tokens which were needed to ensure the correct parse.

• The resulting language can be described by a smaller, simpler
grammar.

24

2. S → id := E (assignment statements)

3. S → print L (print statements)

4. E → id (identifier usage)

5. E → num (numerical values)

6. E → E B E (binary operator use)

7. E → S , E (comma expressions)

8. L→ E (singleton lists)

9. L→ L E (non-singleton lists)

10. B → + (addition)

11. B → − (subtraction)

12. B → ∗ (multiplication)

13. B → / (division)

Error reporting and positional information

• In a one-pass parser, lexical analysis, parsing and semantic analysis
are done simultaneously. If there is a type-checking error then the
current position of lexer can be used in diagnostic error messages.

• A modern compiler makes many passes through the program so
the parse tree must be sprinkled with pos fields. These indicate
the position, within the original source file, of the characters from
which the abstract syntax structures were derived.

• Ideally the parser should maintain a position stack along with the
semantic value stack. Bison provides this; Yacc does not.

struct {
int first_line, last_line;
int first_column, last_column;

};

25

(a := 5; a+1)

translates into abstract syntax as shown below.

A SeqExp(2,
A Exp List(A AssignExp(4,
A SimpleV ar(2, S Symbol("a")),
A IntExp(7, 5)),

A ExpList(A OpExp(11,
A plusOp,
A V arExp(A SimpleV ar(10, S Symbol("a"))),
A IntExp(12, 1)),

NULL)))

Derived forms/defined notation

• The abstract syntax of a language can be further compressed by
defining some constructs of the language in terms of others.

– e1 & e2 is translated to if e1 then e2 else 0

– e1 | e2 is translated to if e1 then 1 else e2

– -i is translated as (0 - i)

• Derived forms lead to simplifications in the semantic analysis
process but they make it harder to generate good diagnostic error
messages for semantic errors.

26

Symbol tables

• The semantic analysis phase of a compiler is characterised by the
maintenance of symbol tables (also called environments) which
map identifiers used in the source program to their types and
locations.

• As declarations of types, variables and functions are processed by
the compiler the identifiers used are bound to “meanings” in the
symbol table. An environment is a set of bindings .

• When uses (non-defining occurrences) of the identifiers are found,
the symbol table is consulted to check the suitability of the use.

• Each local variable in a program has a scope in which it is visible.
As the semantic analysis reaches the end of each scope, the bind-
ings local to that scope are discarded.

Environments in Tiger

Consider the introduction and elimination of environments in the small
Tiger program given below. This program is being compiled in the
environment σ0.

let var a := 10 σ1 = σ0 + { a 7→ int }
var b := 12 σ2 = σ1 + { b 7→ int }

in print_int(b); σ2

let var j := a+b σ3 = σ2 + { j 7→ int }
var a := "hello" σ4 = σ3 + { a 7→ string }

in print(a); print_int(j) σ4

end; σ2

print_int(a) σ2

end σ0

27

Multiple environments in ML and Java

structure M = struct package M;
structure E = struct class E {
val a = 5 static int a = 5;

end }
structure N = struct class N {
val b = 10 static int b = 10;
val a = E.a + b static int a = E.a + b;

end }
structure D = struct class D {
val d = E.a + N.a static int d = E.a + N.a;

end }
end

Multiple symbol tables

With many environments active at once, we must associate names with
environments. This leads to the following collection of symbol tables.

M
E

a

N
b
a

D
d

=

σ1 = { a 7→ int }
σ2 = { E 7→ σ1 }
σ3 = { b 7→ int, a 7→ int }
σ4 = { N 7→ σ3 }
σ5 = { d 7→ int }
σ6 = { D 7→ σ5 }
σ7 = σ2 + σ4 + σ6

σ8 = σ0 + { M 7→ σ7 }

28

can convert each string to an (integer or pointer) symbol.

– Comparing two symbols for equality is very fast.
– Extracting an integer hash key is very fast (we just use the

symbol pointer itself)
– Comparing symbols for “greater than” is very fast (in case we

wish to build binary search trees.)

• To implement the removal of entries in the table upon exiting
a scope the symbol table must also maintain an auxiliary stack,
showing the order in which the symbols were entered into the
table. This can be integrated with the symbol table itself by
adding an extra field in entries to point to the previously entered
symbol.

Types in Tiger

• The primitive types of Tiger are int and string; all types are
either primitive or constructed using records and arrays.

• Record types carry additional information: the names and types
of the fields.

• Arrays work just like records with the modification that all of the
elements of the array must have the same type.

• For array and record types there is another implicit piece of inform-
ation which must be carried by the object: the address of the
object itself. Thus two syntactically identical declarations can
give rise to different types. We can use pointer equality to see if
two record types are truly the same.

29

let type a = { x: int, y: int }
type b = { x: int, y: int }
var i : a := · · ·
var j : b := · · ·

in i := j
end

If we were to change the language to allow usage such as this we would
have to examine record types field by field, recursively, when testing
for equality. This would slow down the type-checking phase of the
compilation considerably.

Record types in Tiger

The following program is legal.

let type a = { x: int, y: int }
type c = a
var i : a := · · ·
var j : c := · · ·

in i := j
end

It is the type expression which causes a new type to be made; not the
type declaration.

Special cases

• In Tiger the expression nil belongs to any record type. We handle
this by inventing a special ‘nil’ type.

• There are expressions in Tiger which return no value (such as the
assignment expression) so we invent a ‘void’ type.

• When processing mutually recursive types we need a place holder
for types whose name we know but whose definition we have not
yet seen. We enter a null pointer for the type name to come and
then later replace it.

30

Environments

Tiger maintains separate name spaces for types and values. Thus we
will have a type environment and a value environment . The following
progam demonstrates that one environment will not be enough.

let type a = int
var a : a := 5
var b : a := a

in b+a
end

The symbol a denotes a type in contexts where a type is expected and
a variable in contexts where a variable is expected. At no point are we
ever unsure of the meaning from the context.

Environment entries

• For a type identifier we need to remember the type that it denotes.
The type environment is initialised to include definitions for int
and string.

• For each value identifier we need to know whether it is a variable
or a function. If it is a variable we need to know its type. If
it is a function we need to know its parameter and result types.
The variable environment is initialised to include definitions of
predefined functions.

• As types, variables and functions are declared, the type-checker
augments the environments. The environments are consulted for
each identifier found when processing expressions.

Type-checking expressions

Type-checking is the first part of the translation process which we
consider. Our semantic analysis module performs type-checking of the

31

abstract syntax of the language. It contains these functions.

struct expty transVar(S_table venv, S_table tenv, A_var v);
struct expty transExp(S_table venv, S_table tenv, A_exp a);
void transDec(S_table venv, S_table tenv, A_dec d);
struct Ty_ty transTy (S_table tenv, A_ty a);

The expty type contains a translated expression and its Tiger-language
type.

struct expty {Tr_exp exp; Ty_ty ty;};

struct expty expTy(Tr_exp exp, Ty_ty ty) {
struct expty e; e.exp=exp; e.ty=ty; return e;

}

Type-checking arithmetic expressions (in ML)

fun transExp(venv, tenv,
Absyn.OpExp{left,oper=Absyn.PlusOp,right,pos}) =

let val {exp=_, ty=tyleft} = transExp(venv, tenv, left)
val {exp=_, ty=tyright} = transExp(venv, tenv, right)

in case tyleft of Types.INT => ()
| _ => error pos "integer required";

case tyright of Types.INT => ()
| _ => error pos "integer required";

{exp=(), ty=Types.INT}
end

32

switch (a->kind) {
...

case A_opExp: {
A_oper oper = a->u.op.oper;
struct expty left = transExp(venv, tenv, a->u.op.left);
struct expty right= transExp(venv, tenv, a->u.op.right);
if (oper==A_plusOp) {

if (left.ty.kind != Ty_int)
EM_error(a->u.op.left->pos, "integer required");

if (right.ty.kind != Ty_int)
EM_error(a->u.op.right->pos, "integer required");

return expTy(NULL, Ty_int());
}
...

}
}

}

Type-checking variables (in Java)

ExpTy transVar(Absyn.SimpleVar v) {
Entry x = (Entry)env.venv.get(v.name);
if (x instanceof VarEntry) {

/* found the variable in the symbol table */
VarEntry ent = (VarEntry)x;
return new ExpTy (null, ent.ty);

}
else {

/* failed to find the variable */
error (v.pos, "undefined variable");
return new ExpTy(null, INT);

}
}

33

switch (v->kind) {
case A_simpleVar: {
E_enventry x = S_look(venv,v->u.simple);
if (x && x->kind==E_varEntry)

/* found the variable in the symbol table */
return expTy(NULL, actual_ty(x->u.var.ty));

else
/* failed to find the variable */
{ EM_error(v->pos, "undefined variable %s",

S_name(v->u.simple));
return expTy(NULL, Ty_int());}

}
case A_fieldVar:
...

}
}

Type-checking let-expressions

struct expty transExp(S_table venv, S_table tenv, A_exp a) {
switch(a->kind) {

...
case A_letExp: {
/* let d in exp end */
struct expty exp;
A_declist d;
S_beginScope(venv);
S_beginScope(tenv);
/* process the declarations in the list */
for (d = a->u.let.decs; d; d = d->tail)

transDec(venv, tenv, d->head);
/* translate the expression in the body */
exp = transExp(venv, tenv, a->u.let.body);
S_endScope(tenv);
S_endScope(venv);
return exp;

}
...

}

34

Type-checking variable declarations

void transDec(S_table venv, S_table tenv, A_dec d) {
switch(d->kind) {
case A_varDec: {

/* var id := exp */
struct expty e = transExp(venv,tenv,d->u.var.init);
S_enter(venv, d->u.var.var, E_VarEntry(e.ty));

}
...

}
}

If a type constraint is present it would also be necessary to check that
the constraint and the expression are compatible. Initialisations to nil
must be accompanied by a type constraint which is of a record type.

Type-checking function declarations

void transDec(S_table venv, S_table tenv, A_dec d) {
switch(d->kind) {

...
case A_functionDec: {
A_fundec f = d->u.function->head;
Ty_ty resultTy = tylook(tenv,f->result,f->pos);
Ty_tyList formalTys = makeFormalTyList(tenv,f->params);
/* for non-recursive functions only */
S_enter(venv,f->name,E_FunEntry(formalTys,resultTy));
S_beginScope(venv);
{ A_fieldList l; Ty_tyList t;

for(l=f->params, t=formalTys; l; l=l->tail, t=t->tail)
S_enter(venv,l->head->name,E_VarEntry(t->head));

}
/* should check compatibility with result type */
transExp(venv, tenv, d->u.function->body);
S_endScope(venv);
break;

}

35

Recursive declarations

• When type-checking a collection of mutually recursive declara-
tions the compiler must make two passes through the declarations.

• In the first pass the aim is to collect all of the headers of the
declarations.

– The header of a type is its identifier.
– The header of a function is its name, formal parameter list

and return type.

• In the second pass the bodies of the declarations are processed in
the environment extended with the header information.

Local variables

The following function has a parameter x and a local variable y.

function f(x : int) : int =
let var y := x+x
in if y < 10

then f(y)
else y-1

end

When the function f is called a new instantiation of x is created
and initialised by f’s caller. Because there are recursive calls to f
many of these x’s exist simultaneously. Similarly, many y’s exist
simultaneously. If local variables are created on function entry and
destroyed on function exit, then we can use a stack to hold them.

36

valued variables it may be necessary to keep local variables after a
function call has returned control to its caller. Consider the following
Standard ML function.

fun f x =
let fun g y = x+y
in g
end

When f returns it is too soon to destroy x. The value which x was
given in the call to f will be needed when the function returned by f
is called.

In order to be able to use the stack discipline to store local variables
most programming languages provide either nested functions (Pascal
and Tiger) or functions as returnable results (C) but not both.

Stack frames

• We will consider functions whose local variables can be stored on
a stack. We treat the stack as a big array with a stack pointer . All
locations past the stack pointer are considered to contain rubbish
and all of the locations before it are considered to be allocated.

• The stack grows on entry to a function by an increment large
enough to hold all of the local variables. On exit it shrinks by the
same amount.

• The area on the stack devoted to local variables, parameters,
return address and other temporary values is called the function’s
activation record or stack frame.

• Sometimes the manufacturer of a computer prescribes a “stand-
ard” frame layout. Using this allows calls to functions written in
other programming languages.

37

say that g is the caller and f is the callee.

• On entry to f , the stack pointer points to the first argument
which g passes to f . On entry, f allocates a frame by subtracting
the frame size from the stack pointer SP. The old SP becomes the
current frame pointer FP.

• If the frame size is fixed, then for each function f the FP will
always differ from SP by a known constant, and it is not necessary
to use a register for FP at all—FP is a ‘virtual’ register whose value
is always SP + framesize.

Registers

• A modern machine has a large set of registers (typically 32 of
them). For efficiency reasons, it is useful to keep local variables,
intermediate results of expressions, and other values in registers
instead of in the stack frame.

• The benefit of doing this is that registers can be directly accessed
by arithmetic instructions whereas accessing memory typically
requires load and store instructions.

• Even on those machines whose arithmetic instructions can access
memory, it is still faster to access registers.

38

Function calling conventions

• A machine usually has only one set of registers, which many
different functions need to use. Suppose f is using register r and
calls g, which also uses r. Then r must be saved (into a stack
frame) before g uses it and restored afterwards.

• If it is f ’s responsibility to do this then we say that r is a caller-
save register. If it is g’s responsibility then we say that r is a
callee-save register.

• On most architectures this notion is a convention described in the
machine’s reference manual. On the MIPS architecture registers
16 to 23 are callee-save and all others are not.

• Sometimes the saves and restores are unnecessary. If f knows that
the value of some local variable in not needed after the call it can
put it in a caller-save register and then not save it. The selection
of the appropriate kind of register for each variable is done by the
register allocator routine.

Boring Fact about Programs #1

Studies of actual programs have shown that
very few functions have more than four arguments,

and almost none have more than six.

Therefore, parameter-passing conventions for modern machines specify
that the first k arguments (k = 4 or k = 6, typically) of a function are
passed in registers and the rest in memory.

However, suppose that f(a 1, . . . , a n) calls h(z). It must pass z in
r 1 (say) and save a 1. How has the use of registers saved any time?

39

Boring Fact about Programs #2

Most functions which are called are leaf functions .
That is, they do not call any others.

1. Leaf functions need not store their incoming arguments in memory.
In fact, they often do not need a stack frame at all.

2. Some optimising compilers use interprocedural register allocation,
analysing all the functions in a program at once.

3. The threatened variable may now actually be dead anyway, and
need not be saved.

4. Some architectures have register windows so that each function
invocation can allocate a fresh set without memory traffic.

Address accesses and pointer arithmetic

• C allows programmers to take the address of a formal parameter
and guarantees that all the formal parameters of a function are
at consecutive addresses. The later fact is used by printf.

• Allowing programmers to take addresses can lead to dangling
references .

int *f (int x) { return &x; }

• To resolve the contradiction that parameters are passed in registers
but have addresses in memory too, the first k of them are passed
in registers but any parameter whose address is taken must be
written to a memory location on entry to the function.

• Because the memory locations into which register arguments are
written must be consecutive if the addresses of parameters 1 and 5
are taken in the function then parameters 2, 3 and 4 must be
written to memory on entry to the function also.

40

to use call-by-reference. With call-by-reference, the programmer
does not explicitly manipulate the address of a variable, x. Instead,
if x is passed to f(y) where y is a “by reference” parameter, the
compiler generates code to pass the address of x instead of its
contents.

• At any use of y in the function body the compiler generates an
extra pointer dereference.

• With call-by-reference, there are no dangling references because y
must disappear when f returns.

• The Ada programming language has three types of parameter
passing, input, output and transput. Requiring the programmer
to be so discerning allows the compiler to generate good code for
function calls with no copying of values.

Return addresses

• When function g calls function f , eventually f must return. It
needs to know where to go back to.

• If the call instruction within g is at address a, then usually the
right place is address a+ 1. This is called the return address.

• The call instruction puts the return address in a designated register.
A non-leaf function will then have to write it to the stack (unless
interprocedural analysis says otherwise) whereas a leaf function
will not.

41

traffic, values are written to memory (in the stack frame) only when
necessary for one of these reasons.

1. The variable will be passed by reference, or the & operator applied.

2. The variable is accessed by a nested procedure.

3. The variable is too big to fit in a single register.

4. The variable is an array, necessitating address arithmetic.

5. The register holding the variable is needed for a particular purpose.

6. There are so many local variables and parameters that they must
be “spilled” into the frame.

We say that a variable escapes if it is passed by reference, its address
is taken (using &), or it is accessed from a nested function.

Static links

• In languages which allow nested functions, an inner function may
use variables declared in an outer one. This language feature is
called block structure.

• In such languages functions may have to have references to not
only their own frame but also those of outer functions. There are
several methods to accomplish this.

– Whenever f is called it is passed a pointer to the frame of the
function statically enclosing f . This pointer is the static link .

– A global array can be maintained containing—in position i—
a pointer to the frame of the most recently entered procedure
whose static nesting depth is i. Such an array is called a
display.

– When g calls f , each variable of g that is actually accessed
by f is actually passed as an extra argument. This is called
lambda lifting .

42

A nested functions example

type tree = {key : string, left: tree, right: tree}

function prettyprint (tree: tree) : string =
let var output := ""

function write (s: string) =
output := concat (output, s)

function show (n: int, t: tree) =
let function indent (s: string) =

(for i := 1 to n do write (" ");
output := concat (output, s))

in if t=nil then indent (".")
else (indent (t.key);

show (n+1, t.left);
show (n+1, t.right))

end
in show (0, tree); output
end

Abstracting from machine specific details

• Different target machine architectures will have different notions
of stack frames. In order to produce a portable compiler we
should abstract away from the details of the standard layout on a
particular architecture.

• We define an interface for the routines which will process stack
frames (frame.h). If machine-independent parts of the compiler
only manipulate frames through this abstract interface then we
will be able to replace one implementation of frames with another.

43

An interface to frames

/* frame.h */

typedef struct F_frame_ *F_frame;
typedef struct F_access_ *F_access; /* an abstract

data type for parameters or local variables */

typedef struct F_accessList_ *F_accessList;
struct F_accessList_ { F_access head; F_accessList tail;};

F_frame F_newFrame(Temp_label name, U_boolList formals);
Temp_label F_name(F_frame f);
F_accessList F_formals(F_frame f);
F_access F_allocLocal(F_frame f, bool escape);

...

Frame creation and use

• The type F frame holds information about formal parameters and
local variables. To make a new frame for a function f with k
formal parameters, call F newFrame(f, l), where l is a list of k
booleans recording whether or not each parameter escapes. E.g.

F_newFrame(g, U_BoolList (TRUE,
U_BoolList (FALSE,

U_BoolList (FALSE, NULL))))

• The F_formals interface function returns a list of k accesses
denoting the locations where the formal parameters will be kept
at run time, as seen from inside the callee.

• The difference in the caller’s method of access and the callee’s is
called the view shift .

44

which may be in the frame or in registers. The contents of struct
F_access_ are only visible inside the Frame module.

struct F_access_
{ enum { inFrame, inReg } kind;

union {
int offset; /* InFrame */
Temp_temp reg; /* InReg */

} u;
};

static F_access InFrame(int offset);
static F_access InReg(Temp_temp reg);

InFrame(X) indicates offset X from the frame pointer; InReg(t84)
indicates that it will be held in register t84.

The view shift

• Because the “view shift” (from the caller’s perspective to the
callee’s perspective) depends on the calling conventions of the
target machine it must be handled by the Frame module, starting
with newFrame.

• For each formal parameter, newFrame must calculate two things:

– How the parameter will be seen from inside the function (in
a register, or in a frame location);

– What instructions must be produced to implement the “view
shift”

• For example, a frame-resident parameter will be seen as “memory
at offset X from the frame pointer” and the view shift will be
implemented by copying the stack pointer to the frame pointer on
entry to the procedure.

45

On the MIPS architecture the parameters could be passed thus:

InFrame(0) InReg(t157) InReg(t158)

• The view shift could be implemented in this way:

sp ← sp − K
M [sp + K + 0] ← r2
t157 ← r4
t158 ← r5

• If the register allocator ultimately chooses r4 for the second para-
meter and r5 for the third then the unnecessary move instructions
at the end of the view shift could be deleted at that time.

Local variables

• Some local variables are kept in the frame; others are kept in
registers. To allocate a new local variable in a frame f the semantic
analysis phase calls F_allocLocal(f, TRUE) where the boolean
argument specifies whether the local variable escapes.

• Calls to allocLocal need not all come immediately after the
frame is created. For example,

function f() =
let var v := 6
in print(v); let var v := 7 in print(v) end;

print(v); let var v := 8 in print(v) end;
print(v)

end

In this example, the second and third v variables could be held in
the same temporary location. A clever compiler might optimise
the size of the frame to make use of this fact.

46

Calculating escapes

• Local variables that do not escape can be allocated in registers.
Escaping variables must be allocated in the frame. A FindEscape
function can look for escaping variables and record this informa-
tion in the abstract syntax tree for the program. This processing
must happen before semantic analysis begins.

• The traversal function for FindEscape will be a mutual recursion
on abstract syntax exp’s and var’s, just like the type-checker.

• Again, like the type checker it will build up an environment which
maps variables to bindings. Here the bindings simply record if the
variable escapes.

Temporaries and labels

• The compiler’s semantic analysis phase will choose registers for
parameters and local variables, and also to choose machine-code
addresses for procedure bodies. But it is too early to determine
exactly which registers are available or exactly where a procedure
body will be located. We use the word temporary to mean a value
that is temporarily held in a register, and the word label to mean
some machine-language location whose exact address is yet to be
determined.

• The Temp module provides the following functions.

– Temp_newtemp() return a new temporary
– Temp_newlabel() return a new label
– Temp_namedlabel(string) returns a new label whose assembly

language name is string.

47

Constructors for temporaries and labels

Temp_temp Temp_newtemp(void);

Temp_tempList Temp_TempList(Temp_temp h, Temp_tempList t);

Temp_label Temp_newlabel(void);
Temp_label Temp_namedlabel(string name);
string Temp_labelstring(Temp_label s);

Temp_labelList Temp_LabelList(Temp_label h, Temp_labelList t);

Temp_map Temp_empty(void);
Temp_map Temp_layerMap(Temp_map over, Temp_map under);
void Temp_enter(Temp_map m, Temp_temp t, string s);
string Temp_look(Temp_map m, Temp_temp t);

Temp_map Temp_name(void);

Environment entries revisited

In the semantic analysis phase of the Tiger compiler, transDec creates
a new “nesting level” for each function body. The nesting level is stored
in the FunEntry data structure for the function. The FunEntry also
needs the label of the function’s machine code entry point.

/* New versions of VarEntry and FunEntry */
struct E_enventry_ {

enum { E_varEntry, E_funEntry } kind;
union { struct { Tr_access access; Ty_ty ty; } var;

struct { Tr_level level; Temp_label label;
Ty_tylist formals; Ty_ty result; } fun;

} u;
};

48

language being compiled. Many source languages do not have
nested functions so Frame should not know about static links.

• The Translate module knows that each frame contains a static
link. The static link is passed in a register and stored in the frame.
Since the static link behaves so much like a formal parameter we
treat it as one, specifically one which escapes.

• Then, just before creating a new frame we add another formal
parameter to the front for the static link.

F_newFrame(label, U_BoolList(TRUE, fmls))

What comes back is an F_frame. In this frame are three offset
values, accessible by calling F_formals(frame).

Translation to intermediate code

• The semantic analysis phase of a compiler must translate abstract
syntax into machine code. It can do this at the same time as type-
checking, or after.

• Although it would be possible to translate directly to real machine
code this would hinder portability and modularity. An interme-
diate representation (IR) is an abstract machine language which
can express target machine operations without too much machine-
specific detail. It is independent of the details of the source
language.

• Thus the front end of a compiler does lexical analysis, parsing,
semantic analysis, and translation to an intermediate representa-
tion. The back end does optimisation of the intermediate repres-
entation and translation to machine language.

49

• It must be convenient for the semantic analysis phase to produce.

• It must be convenient to translate into real machine language, for
all the desired target machines.

• Each construct must have a clear and simple meaning, so that
optimising transformations that rewrite the intermediate repres-
entation can easily be specified and implemented.

The intermediate representation should have individual components
which are extremely simple: a single fetch, store, add, move or jump.
A piece of abstract syntax can be translated into a set of abstract
machine instructions and groups of abstract machine instructions can
be brought together to form genuine machine instructions.

Expressions in the IR language

CONST (i) The integer constant i.

NAME (n) The symbolic constant n, corresponding to an assembly
language label.

TEMP (t) Temporary t. A temporary in the abstract machine is
similar to a register in the real one.

BINOP (o, e 1, e 2) The application of operator o to e 1 and e 2, eval-
uated in that order. The operators are PLUS, MINUS, MUL, DIV,
AND, OR, XOR, LSHIFT, RSHIFT, ARSHIFT.

MEM (e) The contents of wordSize bytes of memory from address e.

CALL (f, l) The application of function f to argument list l, evaluated
in that order.

ESEQ (s, e) The statement s is evaluated for its side effect then e for
its result.

50

Statements in the IR language

MOVE (TEMP t, e) Evaluate e and move it to temporary t.

MOVE (MEM e 1, e 2) Evaluate e 1, yielding address a. Then eval-
uate e 2 and store the result into wordSize bytes of memory starting
at a.

EXP (e) Evaluate e and discard the result.

JUMP (e, labs) Transfer control to address e. The list of labels specifies
all possible locations that e can evaluate to, for dataflow analysis.

CJUMP (o, e 1, e 2, t, f) Evaluate e 1, then e 2. Compare the results
using the relational operator o. If the result is true, jump to t;
otherwise jump to f . The relational operators are EQ, NE, LT, GT,
LE, GE, ULT, UGT, ULE, UGE.

SEQ (s 1, s 2) The statement s 1 followed by s 2.

LABEL (n) Define the constant value of name n to be the current
machine code address.

Kinds of expressions

• The Tiger language contains expressions of different kinds: some
produce values and some do not (assignments, loops and procedure
calls). Expressions with Boolean values can be best represented
by a conditional jump.

• We will make a union type, as usual, with a kind tag. This will
model three kinds of expressions.

Ex: This is a value-producing expression, represented as a Tr_exp.
Nx: An expression with no result, represented as a Tr_stm.
Cx: A conditional represented as a statement which may jump to

a true-label or a false-label. These labels have yet to be filled
in. The statement never “falls through”.

51

Implementing expressions

/* in translate.h */
typedef struct Tr_exp_ *Tr_exp

/* in translate.c */
struct Cx { patchList trues; patchList falses; T_stm stm; };

struct Tr_exp_
{ enum { Tr_ex, Tr_nx, Tr_cx } kind;
union { T_exp ex; T_stm nx; struct Cx cx; } u;

};

static Tr_exp Tr_Ex(T_exp ex);
static Tr_exp Tr_Nx(T_stm nx);
static Tr_exp Tr_Cx(patchList trues, patchList falses, T_stm stm);

Translating an expression

The Tiger expression a>b|c<d might translate to the following.

Temp_label z = Temp_newlabel();
T_stm s1 =

T_Seq(T_Cjump(T_gt, a, b, NULL t, z),
T_Seq(T_Label(z),

T_Cjump(T_lt, c, d, NULL t, NULL f)));

The destinations t and f are not known yet, although z is. The
statement contains NULL t and NULL f , which are yet to be filled in.

52

typedef struct patchList_ *patchList
struct patchList_ { Temp_label *head; patchList tail; };

static patchList PatchList(Temp_label *head, patchList tail);

We can complete the translation of a>b|c<d as follows.

patchList trues =
PatchList(&s1->u.SEQ.left->u.CJUMP.true,

PatchList(&s1->u.SEQ.right->u.SEQ.right->u.CJUMP.true,
NULL));

patchList falses =
PatchList(&s1->u.SEQ.right->u.SEQ.right->u.CJUMP.false,

NULL);

Tr_exp e1 = Tr_Cx(trues, falses, s1);

Modifying expressions

Sometimes we will have an expression of one kind (Ex, Nx, Cx) and we
need to convert it to another kind. For example, the Tiger expression

flag := (a>b | c<d)

requires the conversion of a Cx into a Ex so that a 1 or 0 can be stored
into flag. It is helpful to have three conversion functions.

static T_exp unEx(Tr_exp e);
static T_stm unNx(Tr_exp e);
static struct Cx unCx(Tr_exp e);

To implement these we need some utility functions on patch lists.

53

trues patch list with t. A similar call would fill in the falses list.

void doPatch(patchList tList, Temp_label label) {
for (; tList; tList=tList->tail)

*(tList->head) = label;
}

By calling joinPatch(first,second)we link two patch lists together.

patchList joinPatch(patchList first, patchList second) {
if (!first) return second;
/* go to end of list */
for (; first->tail; first=first->tail);
first->tail = second;
return first;

}

The unEx conversion function

static T_exp unEx(Tr_exp e) {
switch(e->kind) {

case Tr_ex:
return e->u.ex;

case Tr_cx: {
Temp_temp r = Temp_newtemp();
Temp_label t = Temp_newlabel(), f = Temp_newlabel();
doPatch(e->u.cx.trues, t);
doPatch(e->u.cx.falses, f);
return T_Eseq(T_Move(T_Temp(r), T_Const(1)),

T_Eseq(e->u.cx.stm,
T_Eseq(T_Label(f),
T_Eseq(T_Move(T_Temp(r), T_Const(0)),
T_Eseq(T_Label(t),

T_Temp(r))))));
}
case Tr_nx:
return T_Eseq(e->u.nx, T_Const(0));

}
assert(0); /* can’t get here */

}

54

Simple variables

• The semantic analysis phase has a function which type-checks a
variable in the context of a type environment tenv and a value
environment venv. Previously the expression returned was just a
place-holder but now we may return the intermediate representa-
tion of each Tiger expression.

• For the simple variable v declared in the current procedure’s stack
frame we translate it as

MEM(BINOP(PLUS, TEMP fp, CONST k))

where k is the offset of v within the frame and TEMP fp is the
frame pointer register.

• In Tiger this translation is simplified by the fact that all variables
are the same size—the natural word size of the machine.

Interface between Translate and Semant

• The type Tr_exp is an abstract data type, whose Ex and Nx
constructors are only visible within the Translate module.

• All of the manipulation of MEM nodes should be done within the
Translate module, not within Semant.

• We add a function

Tr_Exp Tr_simpleVar(Tr_Access a, Tr_Level l);

to the Translate interface. Now Semant can pass in the access of
x (obtained from Tr_allocLocal) and the level of the function
in which x is used and get back a Tr_Exp.

55

Extending the Frame module

The Frame module holds all machine-dependent definitions; here we
add a frame-pointer register FP and a constant whose value is the
machine’s natural word size.

/* frame.h */
...

Temp_temp F_FP(void);
extern const int F_wordSize;
T_exp F_Exp(F_access acc, T_exp framePtr);

Using the Frame module

• The function F_Exp is used by Translate to turn an F_access
into a Tree expression. The framePtr argument is the address of
the stack frame that the F_access is in.

• Thus for an access a such as InFrame k, we have

F_Exp(a, T_Temp(F_FP()))

returns the result

MEM(BINOP(PLUS, TEMP fp, CONST k))

56

variables or formal parameters. A function might access a variable
which was declared by its parent. When a variable is declared at
an outer level of static scope like this we access it by following
static links. in general, we have this:

MEM(BINOP(PLUS, CONST kn,
MEM(BINOP(PLUS, CONST kn−1,

. . .
MEM(BINOP(PLUS, CONST k1,

TEMP fp)) · · ·))))

• The constants k1, . . . , kn−1 are the various static link offsets in
nested functions and kn is the offset of x in its own frame.

Translating complex logical expressions

• The result of a comparison operator will be a Cx expression; a
statement s which will jump to any true-destination and false-
destination which are specified.

• Making a Cx expression from a single use of the comparison oper-
ators of the Tiger language is relatively straightforward. For
example, the expression x<5 will be translated as a Cx with

trues = {t}
falses = {f}

stm = CJUMP (LT, x, CONST 5, NULL t , NULL f)

• However, Cx expressions can themselves form part of a larger
truth-valued expression. The & (and) and | (or) operators of
the Tiger language combine logical expressions using short-circuit
evaluation. These have already been translated into if-expressions
in the abstract syntax.

57

if e1 then e2 else e3

is to treat e1 as a Cx expression, and e2 and e3 as Ex expressions.
We need to fit the three sub-expressions together into a stream
of statements into which we can insert labels for the then branch
and the else branch.

• We proceed by applying unCx to e1 and unEx to e2 and e3. We
make two labels to which the conditional will branch, t and f.
Allocate a temporary r, and after label t move e2 to r; after label
f move e3 to r. Both branches should finish by jumping to a newly
created “join” label.

Problem cases for conditional expressions (1)

Following our proposed translation would lead to inefficient code. A
common use of an if-expression is to allow the selection between two
“statements” (expressions which produce no value). In this case their
representation will have been constructed using the Nx constructor.
Applying unEx to them will work but it might be better to recognise
this case specially.

Problem cases for conditional expressions (2)

Worse, if e2 or e3 is a Cx expression then the use of unEx produces
even longer statement sequences. Again, we should recognise this case
specially. For example, an if-expression such as the following

if (if x < 5 then a > b else 0︸ ︷︷ ︸ x < 5 & a > b) then . . .

should be translated as

SEQ(s1(z, f), SEQ(LABEL z, s2(t, f)))

for some new label z. The notation s1(z, f) denotes the Cx statement
s1 with its trues labels filled in with z and its falses labels filled in
with f .

58

Strings

• A string literal in the Tiger (or C) language is the constant address
of a segment of memory initialised to the proper characters. In
assembly language a label is used to refer to this address. At
some place the definition of the label appears, followed by pseudo-
instructions to reserve and initialise a block of memory.

• For each string literal lit, the Translate module make a new
label lab, and returns the tree T_Name(lab). It also puts the
assembly-language fragment F_String(lab,lit) onto a global
list of such fragments to be handed to the code emitter.

• All string operations are performed in functions provided by the
runtime system.

Representing strings

• Different programming languages represent strings in different
ways. These representations have different strengths and draw-
backs.

• In Pascal strings are fixed-length arrays of characters; literals are
padded with blanks to make them fit. The inflexibility in length
is not very useful.

• In C, strings are pointers to variable-length sequences of charac-
ters terminated by a zero. Here, a string containing a zero byte
cannot be represented.

• In Tiger we will have strings represented by a pair of a one-word
integer containing the number of characters together with the
characters themselves.

59

Record and array creation

• The Tiger language expression t{ f1 = e1, f2 = e2, . . . , fn = en }
creates an n-element record of type t with fields fi initialised to the
values of expressions ei. Such a record may outlive the instance
of the function which created it, so it cannot be allocated on the
stack. Instead it must be allocated in another memory area called
the heap. Heap-allocated values must be reclaimed by a garbage
collector when an analysis determines that they are no longer
reachable.

• To create a record allocate an n-word memory area into a new
temporary r (using malloc). A series of MOVE instructions can
initialise offsets 0, W , 2W , . . . , (n − 1)W from r. The result of
the whole expression is TEMP r.

• Array creation is very similar except that all locations are initial-
ised to the same value.

Calling runtime-system functions

• To call an external function named initArray with arguments a
and b, simply generate a call such as

CALL (NAME(Temp_namedlabel("initArray")),
T_ExpList(a, T_ExpList(b, NULL)))

This refers to an external function written in C or assembler.

• However, on some operating systems the C compiler puts an
underscore at the beginning of each label; the calling conventions
of C are different from those of Tiger functions; C functions don’t
expect to receive a static link, and so on. We encapsulate all of
this in the Frame module, as usual.

/* frame.h */
...

T_exp F_externalCall(string s, T_expList args);

60

test :
if not(condition) goto done
body
goto test

done:

If a break statement occurs within the body (and not nested
within an interior while loop or a procedure body) then the
translation is simply a jump to the label done.

• So that transExp can translate break statements, it will have a
new formal parameter break that is the done label of the nearest
enclosing loop.

For loops

A for statement can be expressed as a combination of let .. in .. end
and a while loop.

for i := lo to hi
do body

let var i := lo
var limit := hi

in while i <= limit
do (body; i := i + 1)

end

This is almost right. It fails when hi evaluates to the maximum
representable integer. The final increment in the loop body will either
overflow or wrap around. Neither behaviour is correct. A production
quality compiler would generate an extra test for this.

Function calls

Translating a function call f(e 1, . . . , e n) is relatively simple except
that the static link must be added as an extra argument.

CALL(NAME l f, [sl, e 1, . . . , e n])

Here l f is the label for f , sl is the static link and the e i are the
translations of the argument list a i. To calculate the static link both

61

, g p ()
Frame module.

Variable definition

• The transDec function which we saw when considering type-
checking updates the value environment and type environment.
These are used in processing the body of a let expression.

• In Tiger, variables are always given their initial value at the
time that they are declared and so a variable declaration must
also produce a Tree expression that must be put just before
the body of the let. Therefore transDec must also return a
Tr_exp containing assignment expressions which accomplish these
initialisations.

• If transDec is applied to function and type declarations, the
Tr_exp must be a “no-op” expression such as Tr_Ex(T_Const(0)).

Function definition

Each Tiger function is translated into a prologue (1–5), a body (6) and
an epilogue (7–11).

1. pseudo-instructions for the function beginning

2. a label definition for the function name

3. an instruction to adjust the stack pointer

4. instructions to save “escaping” arguments

5. store instructions to save any callee-save registers

6. the function body

7. an instruction to deliver the function result

8. load instructions to restore the callee-save registers

9. an instruction to reset the stack pointer

10. a jump to the return address

11. pseudo-instructions for the function end

62

Frames and function definitions

• Some of the parts of the translation of a function definition depend
on knowledge of the frame size. In order to keep this information
separated from the machine-independent parts of the compiler we
find that we should add more definitions to the Frame module.

• For return values we need a distinguished return value location.

Temp_temp F_RV(void);

• Moving formal parameters and the saving and restoring of callee-
save registers should also be handled by a function in the Frame
module.

T_stm F_procEntryExit1(F_frame frame, T_stm stm);

Translating the Tree language to machine-language

Some features of the Tree language must be adapted before translation
into machine language.

• The CJUMP instruction can jump to either of two labels but real
machine’s conditional jumps fall through if the condition is false.

• ESEQ nodes within expressions are inconvenient because they make
different orders of evaluating subtrees yield different results.

• CALL nodes within expressions cause the same problem.

• CALL nodes within the argument-expressions of other CALL nodes
cause problems when sharing formal parameter registers.

63

Rewriting trees

• We can take any tree and rewrite it into an equivalent tree without
the problems due to ESEQ and CALL nodes. Without these cases
we will have a simple collection of SEQ nodes clustered together
at the top of the tree. This can easily be turned into a linear list
of instructions.

• The transformation is done in three stages:

1. A tree is rewritten into a list of canonical trees without SEQ
or ESEQ nodes.

2. This list is grouped into basic blocks , which contain no internal
jumps or labels.

3. The basic blocks are ordered into a set of traces in which every
CJUMP is immediately followed by its false label.

Canonicalisation module

The Canon module has these tree rearrangement functions.

/* canon.h */
...

typedef struct C_stmListList_ *C_stmListList;
struct C_block { C_stmListList stmLists; Temp_label label; };
struct C_stmListList_ { T_stmList head; C_stmListList tail; };

T_stmList C_linearize(T_stm stm);
struct C_block C_basicBlocks(T_stmList stmList);
T_stmList C_traceSchedule(struct C_block b);

Linearize removes the ESEQs and moves the CALLs to top level.
BasicBlocks groups statements into sequences of straight-line code.
TraceSchedule orders the blocks so that each CJUMP is followed by
its false label.

64

trees which obey the following two rules.

1. There is no use of the SEQ or ESEQ nodes in the tree.
2. The parent of each CALL is either of the form EXP(. . .) or

of the form MOVE(TEMP t, . . .). The former correspond to
procedure calls (which do not return a result) and the latter
to function calls (which do).

• ESEQ nodes are eliminated by moving them further and further
up the tree until they become SEQ nodes. Many useful transform-
ations on trees can be defined. These can be repeatedly applied
to bring about the alterations which we want to make.

Commutativity

We wish to re-arrange intermediate representation trees so that all
of the ESEQ nodes move up the tree. When we consider a subtree
produced by z+(x:=y,x) such as

BINOP(PLUS, MEM(z), ESEQ(MOVE(MEM(x), y), MEM(x)))

with a subtree such as

ESEQ(MOVE(MEM(x), y), BINOP(PLUS, MEM(z), MEM(x)))

as would have been produced by (x:=y,z+x) we need to determine
whether the x:=y and the z commute.

We cannot always determine this at compile time. Under some run-
time evaluations x and z might be aliases . That is, they might be
two different names for the same location. A situation such as this
can be created by parameter passing where variables may be passed
by reference.

65

and array types are passed by reference and thus inside the body of the
alias function, x and z are two different names for the same record.

function eval () : int =
let
type recvar = { val : int }
var y: int := 10
var z: recvar := recvar{ val = 0 }
function alias (x: recvar) : int =

(x.val := y, z.val + x.val)
in
alias (z)

end

In C++ reference declarations give rise to aliasing. The example here
could be coded as int alias(int& x) {return (x=y, z+x);}.

Conservatively estimating commutativity

• Although we cannot guarantee to always determine the validity of
commuting a statement with an expression at compile-time we can
at least conservatively approximate commutativity. This means
that we say either “they definitely do commute” or “perhaps they
don’t commute”.

• For example, we know that any statement will commute with any
constant value (say, the expression CONST(n)) so we can always
justify special cases such as the following.

BINOP(op, CONST(n), ESEQ(s, e))
= ESEQ(s, BINOP(op, CONST(n), e))

66

General rewriting rules

Given a Tree statement or expression we first identify the subexpres-
sions and extract these, as directed by our tree transformations. We
then rebuild our statement or expression with the extracted subexpres-
sions replaced in the right way.

typedef struct expRefList_ *expRefList;
struct expRefList_ { T_exp *head; expRefList tail; };

struct stmExp { T_stm s; T_exp e; };

/* Combine the statement parts from ESEQs */
static T_stm reorder(expRefList rlist);

static struct stmExp do_exp(T_exp exp);
static T_stm do_stm(T_stm stm);

Processing expressions

static struct stmExp do_exp(T_exp exp) {
switch (exp->kind) {
case T_BINOP: /* BINOP(o, e1, e2) */

return StmExp(
reorder(ExpRefList(&exp->u.BINOP.left,
ExpRefList(&exp->u.BINOP.right,NULL))), exp);

case T_MEM: /* MEM(e) */
return StmExp(
reorder(ExpRefList(&exp->u.MEM,NULL)), exp);

case T_ESEQ: { /* ESEQ(s, e) */
struct stmExp x = do_exp(exp->u.ESEQ.exp);
return StmExp(seq(do_stm(exp->u.ESEQ.stm), x.s), x.e);

}
case T_CALL: /* CALL(f, l) */

return StmExp(reorder(get_call_rlist(exp)), exp);
default: /* CONST, NAME and TEMP */

return StmExp(reorder(NULL), exp);
}}

67

Eliminating No-Ops

In the case that one of two adjacent statements is a No-Op we can
omit it from the emitted instructions.

/* test for no-ops */
static bool isNop(T_stm x) {
return x->kind == T_EXP && x->u.EXP->kind == T_CONST;

}

/* combine statements, omitting no-ops */
static T_stm seq(T_stm x, T_stm y) {
if (isNop(x)) return y;
if (isNop(y)) return x;
return T_Seq(x,y);

}

Processing statements

static T_stm do_stm(T_stm stm) {
switch (stm->kind) {
case T_SEQ:

return seq(do_stm(stm->u.SEQ.left), do_stm(stm->u.SEQ.right));
case T_JUMP:

return seq(reorder(ExpRefList(&stm->u.JUMP.exp, NULL)), stm);
case T_CJUMP:

return seq(reorder(ExpRefList(&stm->u.CJUMP.left,
ExpRefList(&stm->u.CJUMP.right,NULL))), stm);

case T_MOVE: . . . to do . . .
case T_EXP:

if (stm->u.EXP->kind == T_CALL)
return seq(reorder(get_call_rlist(stm->u.EXP)), stm);

else return seq(reorder(ExpRefList(&stm->u.EXP, NULL)), stm);
default:

return stm;
}}

68

switch (stm->kind) {
. . . other cases as before . . .
case T_MOVE:

if (stm->u.MOVE.dst->kind == T_TEMP &&
stm->u.MOVE.src->kind == T_CALL)

return seq(reorder(get_call_rlist(stm->u.MOVE.src)), stm);
else if (stm->u.MOVE.dst->kind == T_TEMP)
return seq(reorder(ExpRefList(&stm->u.MOVE.src, NULL)), stm);

else if (stm->u.MOVE.dst->kind == T_MEM)
return seq(reorder(ExpRefList(&stm->u.MOVE.dst->u.MEM,

ExpRefList(&stm->u.MOVE.src, NULL))), stm);
else if (stm->u.MOVE.dst->kind == T_ESEQ) {
T_stm s = stm->u.MOVE.dst->u.ESEQ.stm;
stm->u.MOVE.dst = stm->u.MOVE.dst->u.ESEQ.exp;
return do_stm(T_Seq(s, stm));

}
assert(0); /* dst should be temp or mem only */

. . . other cases as before . . .
}}

Commuting statements and expressions

With the assistance of do_exp and do_stm, the reorder function can
pull the statement s i out of each expression e i on its list of references,
going from right to left. Temporaries are introduced if the statement
and expression do not commute. For example, there are three possible
re-arrangements of [e 1, e 2,ESEQ(s, e 3)]:

• s; [e 1, e 2, e 3]

• SEQ(MOVE(t 1, e 1), s); [TEMP(t 1), e 2, e 3]

• SEQ(MOVE(t 1, e 1), SEQ(MOVE(t 2, e 2), s)); [TEMP(t 1),TEMP(t 2), e 3]

The following function estimates whether two expressions commute.

static bool commute(T_stm x, T_exp y) {
return isNop(x) || y->kind==T_NAME || y->kind==T_CONST;

}

69

However, each function returns its result in the same return-value
register TEMP(RV). Thus if we have

BINOP(PLUS, CALL(. . .), CALL(. . .))

then the second call will overwrite the RV register before the PLUS
can be executed. As always, we can solve this by introducing a new
temporary.

CALL(fun, args) →
ESEQ(MOVE(TEMP t, CALL(fun, args)), TEMP t)

Linearising statements

Once an entire function body s 0 is processed with do_stm, the result
is a tree s 0′ where all the SEQ nodes are near the top. The linearize
function repeatedly applies SEQ(SEQ(a, b), c) = SEQ(a, seq (b, c)).

static T_stmList linear(T_stm stm, T_stmList right) {
if (stm->kind == T_SEQ)

return linear(stm->u.SEQ.left,
linear(stm->u.SEQ.right,
right));

else return T_StmList(stm, right);
}

T_stmList C_linearize(T_stm stm) {
return linear(do_stm(stm), NULL);

}

70

Compiling conditional branches

• Another aspect of the Tree language which must be compiled
down into simpler instructions is the two-way branch of the CJUMP
operator. On a real machine the conditional jump either transfers
control (on true) or “falls through” to the next instruction.

• To make the trees easy to translate into machine instructions we
rearrange them so that every CJUMP(cond, l t, l f) is immediately
followed by LABEL(l f), its “false branch”.

• We make this transformation in two stages: we first take the list
of canonical trees and form them into basic blocks ; then we order
the basic blocks into a trace.

Basic blocks

• In determining where the jumps go in a program we are analyzing
the program’s control flow . We consider only the sequencing of
instructions, independent from the program’s data. In this setting
we cannot say whether the condition of a jump will evaluate to
true or false and so we consider both possibilities.

• A basic block is a sequence of statements which is entered at the
beginning and left at the end. That is:

– the first statement is a LABEL;
– the last statement is a JUMP or CJUMP; and
– there are no other LABELS, JUMPS or CJUMPS.

71

Finding basic blocks

We divide a long sequence of statements into basic blocks as follows.

• The sequence is scanned from beginning to end.

• Whenever a LABEL is found, a new block is started.

• Whenever a JUMP or CJUMP is found, a block is ended.

• If this leaves any block not ending with a JUMP or CJUMP then a
JUMP to the next block’s label is added to the end of the block.

• If this leaves any block not beginning with a LABEL then a new
label is invented and put there.

Traces

• Basic blocks can be arranged in any order and the result of executing
the program will be the same. We take advantage of this fact in
two ways:

– we can move the false-labelled block immediately after its
conditional branch; and

– we can arrange that many of the unconditional jumps are
followed by their target label.

• A trace is a sequence of statements which could be consecutively
executed during the execution of the program. For our purposes
we want to make a set of traces that exactly covers the program:
each block must be in exactly one trace. To minimise the number
of JUMPs from one trace to another, we would like to have as few
traces as possible in our covering set.

72

while Q is not empty {
Start a new (empty) trace, call it T .
Remove the head element b from Q.
while b is not marked {

Mark b; append b to the end of T .
Examine the successors of b (blocks to which b branches)
if there is any unmarked successor c

b← c
}
/* All the successors of b are marked. */
End the current trace T .

}

Instruction selection

• The Tree language expresses only one operation in each tree node:
memory fetch or store, addition or subtraction, conditional jump,
and so on. A real machine instruction can often perform several
of these in the same instruction.

• Finding the appropriate machine instructions to implement a given
intermediate representation tree is the job of the instruction selec-
tion phase of a compiler.

• We express a machine instruction as part of an IR tree, called a
tree pattern. Then instruction selection becomes the task of tiling
(or covering) the tree with a minimal set of non-overlapping tree
patterns.

73

language expression using instructions from the Jouette instruc-
tion set.

a[i] := x

• We use the following facts about the variables in the expression
and the Jouette architecture.

– The variable i is a register variable.
– The variables a and x are frame resident. (An array variable

is really a pointer to an array.)
– The wordsize W is 4 (bytes). Thus a[i] is represented by

MEM(BINOP (+, a, BINOP(*, i, 4)))

– Register r0 always contains zero.

Optimal and optimum tilings

• The best tiling of a tree corresponds to an instruction sequence of
least cost. If we assign a cost to each instruction then we could
define an optimum tiling as one whose tiles sum to the lowest
possible value.

• In contrast an optimal tiling is one where no two adjacent tiles
can be combined into a single tile of lower cost.

• If there is some tree pattern that can be split into several tiles of
lower combined cost then we should remove that pattern from our
catalogue of tiles before we begin.

• Every optimum tiling is also optimal, but not vice versa.

74

The “Maximal Munch” algorithm

• The tiles which are used to tile the IR tree can be graded in terms
of the number of their nodes. The tile for ADD has one node, the
tile for SUBI has two and the tile for MOVEM has three. Loosely
speaking, we can say that MOVEM is ‘larger’ than SUBI and that
SUBI is ‘larger’ than ADD.

• The algorithm for optimal tiling is called Maximal Munch and
proceeds in this way.

– Starting at the root of the tree, find the largest tile that fits.
(If two tiles of equal size match at the root then choose either
one.)

– Cover the root node (and others near it) with this tile, leaving
several subtrees.

– Repeat the algorithm for each subtree.

Dynamic programming

• Maximal Munch always finds an optimal tiling, but not necessarily
an optimum one. A dynamic programming algorithm can find the
optimum.

• The algorithm for optimum tiling proceeds in this way.

– Work bottom-up by first finding the costs of all the children
(and grandchildren, . . .) of node n. Then each tile is matched
against node n.

– A tile has zero or more leaves where subtrees can be attached.
For each tile t of cost c that matches at node n there will be
subtrees s1, . . . sn of cost c1, . . . , cn. So the cost of matching
tile t is c+ c1 + · · ·+ cn.

– Of all the tiles tj which match at node n, the one with the
minimum cost match is chosen and the (minimum) cost of
node n is thus computed.

75

Instruction emission

• Once the cost of the root node (and thus the entire tree) is found,
the instruction emission phase begins. The algorithm is as follows:

Emission (node n): for each of the leaves li of the tile selected
at node n, perform Emission(li). Then emit the instruction
matched at node n.

• Note that Emission(n) does not apply itself recursively to the
children of node n, but to the leaves of the tile which matched.

For example, for MEM(+, CONST 1, CONST 2) we emit instructions
for CONST 1 and for the node itself but not for any tile rooted at
the + node.

Liveness analysis

• The front end of a compiler translates programs into an interme-
diate language with an unlimited number of temporary storage
locations (temporaries). The translated program must ultimately
run on a machine with a fixed number of registers.

• Even if their scopes overlap, two temporaries can fit into a single
register if they are never in use at the same time. Following from
this, many temporaries can fit into few registers; if they don’t all
fit, the excess temporaries can be kept in memory.

• A compiler needs to analyse the intermediate representation tree
to determine which temporaries are in use at the same time. A
variable is said to be live if it holds a value which may be needed
in the future. This analysis is called liveness analysis .

76

control-flow graph. Each statement in the program is a node in
the graph. If statement S1 can be followed by statement S2 then
there is an edge from S1 to S2.

• In determining the live range of a variable we work backwards
through the control-flow graph, examining statements.

– If a variable b is used in a statement (i.e. its value is taken)
then b must have been live on the edge leading to the state-
ment.

– If a variable is assigned into in a statement (i.e. its value is
set) then it must be dead on the edge leading to the statement.

Utilising the results

The effect of understanding and making use of the results of liveness
analysis is to allow us to see that two variables could be replaced by
one.

a← 0
L1 : b← a+ 1

c← c + b
a← b ∗ 2
if a < N goto L1

return c

a← 0
L1 : a← a+ 1

c← c+ a
a← a ∗ 2
if a < N goto L1

return c

b← 0
L1 : b← b+ 1

c← c+ b
b← b ∗ 2
if b < N goto L1

return c

77

edges which come from predecessor nodes. The set Pred [n] is all
the predecessors of n and the set Succ[n] is the set of all successors.

• An assigment to a variable or temporary defines that variable. An
occurrence of a variable in an expression uses the variable. We
can speak of the def of a variable as the set of node that use it,
and conversely for a graph node. Similarly we can speak of the
uses of a variable or graph node.

• A variable is live on an edge if there is a directed path from that
edge to a use of the variable which does not go through any defs.
A variable is live-in if it is live on any of the in-edges of a node.
It is live-out if live on any out-edges.

Calculation of liveness by iteration

/ ∗ initialise the edge sets ∗ /
for each n

in [n]← {}; out [n]← {};

repeat
for each n

/ ∗ record the old values ∗ /
in′ [n]← in [n]; out′ [n]← out [n];

/ ∗ compute the new values ∗ /
in [n]← use [n] ∪ (out [n]− def [n]);
out [n]← {};
for each s in succ [n]

out [n]← out [n] ∪ in [s];

until in′ [n] = in [n] and out′ [n] = out [n] for all n

78

Index
abstract syntax, 24
accepting, 14
accesses, 44
activation record, 37
aliases, 65
alphabet, 6
associativity, 9

back end, 49
basic blocks, 64, 71
bindings, 27
block structure, 42
bodies, 36
body, 62

C_basicBlocks, 64
C_block, 64
C_linearize, 64, 70
C_stmListList, 64
C_stmListList_, 64
C_traceSchedule, 64
call-by-reference, 41
callee, 38
callee-save, 39
caller, 38
caller-save, 39
canonical trees, 64, 65
commute, 65
commute, 69
concrete syntax, 24
conservatively approximate, 66
control flow, 71
control-flow graph, 77
Cx, 52

dangling references, 40
defines, 78
display, 42
do_exp, 67
do_stm, 67–69
dynamic programming, 75

E_enventry_, 48
environments, 27
epilogue, 62

escapes, 42
expRefList, 67
expRefList_, 67
expressions, 9

F_access, 44
F_access_, 45
F_accessList, 44
F_accessList_, 44
F_allocLocal, 44
F_Exp, 56
F_formals, 44
F_FP, 56
F_frame, 44
F_name, 44
F_newFrame, 44
F_wordSize, 56
factors, 9
frame pointer, 38
framesize, 38
front end, 49

garbage collector, 60

headers, 36
heap, 60

in-edges, 78
InFrame, 45
InReg, 45
instruction emission, 76
instruction selection, 73
intermediate representation, 49
interprocedural register allocation, 40
isNop, 68
item, 16

Jouette, 74

label, 47
lambda lifting, 42
language, 6
leaf functions, 40
leaves, 75
left-factor, 13

79

INDEX INDEX

Left-to-right parse, leftmost derivation,
1-symbol lookahead, 12

Left-to-right parse, rightmost deriva-
tion, k-token lookahead, 14

linear, 70
live, 76
live range, 77
live-in, 78
live-out, 78
liveness analysis, 76
lookahead, 14

Maximal Munch, 75

non-terminal, 7
non-terminals, 11

optimal, 74
optimum, 74
out-edges, 78

parse tree, 24
PatchList, 53
patchList, 53
patchList_, 53
position stack, 25
precedence, 9
predecessor, 78
predictive parsing table, 12
productions, 6
prologue, 62

recursive descent, 9
reduce-reduce, 21
reference declarations, 66
register allocator, 39
register windows, 40
registers, 38
reorder, 67
return address, 41
rewrite, 64

scope, 27
semantic actions, 23
semantic analysis, 27
semantic value, 23, 25
seq, 68
shift-reduce, 21
stack, 14

stack frame, 37
stack pointer, 37
start symbol, 7
states, 16
static link, 42
static nesting depth, 42
stmExp, 67
strings, 6
successor, 78
symbol tables, 27
symbols, 6

Temp_empty, 48
Temp_enter, 48
Temp_LabelList, 48
Temp_labelstring, 48
Temp_layerMap, 48
Temp_look, 48
Temp_name, 48
Temp_namedlabel, 48
Temp_newlabel, 48
Temp_newtemp, 48
Temp_TempList, 48
temporaries, 76
temporary, 47
terminal, 7
terminals, 11
terms, 9
tiling, 73
Tr_Cx, 52
Tr_Ex, 52
Tr_exp, 52
Tr_exp_, 52
Tr_Nx, 52
trace, 71, 72
traces, 64
transExp, 32, 33
transition table, 15
transVar, 33, 34
tree pattern, 73
type declaration, 30
type environment, 31
type expression, 30

unCx, 53
unEx, 53
unNx, 53
uses, 78

80

81

