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Register Allocation
Part of the compiler’s back end

Critical properties
• Produce correct code that uses k (or fewer) registers
• Minimize added loads and stores
• Minimize space used to hold spilled values
• Operate efficiently

O(n), O(n log2n), maybe O(n2), but not O(2n)
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Global Register Allocation

The big picture

At each point in the code
1 Determine which values will reside in registers
2 Select a register for each such value
The goal is an allocation that “minimizes” running time

Most modern, global allocators use a graph-coloring paradigm
• Build a “conflict graph” or “interference graph”
• Find a k-coloring for the graph, or change the code to a

nearby problem that it can k-color

Register
Allocator

m register
 code

k register
 code

Optimal global allocation
is NP-Complete, under
almost any assumptions.
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Global Register Allocation

What’s harder across multiple blocks?
• Could replace a load with a move
• Good assignment would obviate the move
• Must build a control-flow graph to understand inter-block flow
• Can spend an inordinate amount of time adjusting the allocation

...
store r4 ⇒ x

load x ⇒ r1
...

This is an assignment problem,
not an allocation problem !
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Global Register Allocation

A more complex scenario
• Block with multiple predecessors in the control-flow graph
• Must get the “right” values in the “right” registers in each

predecessor
• In a loop, a block can be its own predecessor
This adds tremendous complications

...
store r4 ⇒ x

load x ⇒ r1
...

...
store r4 ⇒ x

What if one block has x in a
register, but the other does not?
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Global Register Allocation
Taking a global approach
• Abandon the distinction between local & global
• Make systematic use of registers or memory
• Adopt a general scheme to approximate a good allocation

Graph coloring paradigm                          (Lavrov & (later) Chaitin )
1 Build an interference graph GI for the procedure

— Computing LIVE is harder than in the local case
— GI is not an interval graph

2 (try to) construct a k-coloring
— Minimal coloring is NP-Complete
— Spill placement becomes a critical issue

3 Map colors onto physical registers
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Graph Coloring              (A Background Digression)
The problem

A graph G  is said to be k-colorable  iff the nodes can be labeled
with integers 1… k so that no edge in G connects two nodes
with the same label

Examples

Each color can be mapped to a distinct physical register

2-colorable 3-colorable
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Building the Interference Graph
What is an “interference” ? (or conflict)
• Two values interfere if there exists an operation where both

are simultaneously live
• If x and y interfere, they cannot occupy the same register
To compute interferences, we must know where values are “live”

The interference graph, GI = (NI,EI)
• Nodes in GI represent values, or live ranges
• Edges in GI represent individual interferences

— For x, y ∈ NI, <x,y> ∈ EI iff  x and y interfere
• A k-coloring of GI can be mapped into an allocation to k

registers
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Building the Interference Graph
To build the interference graph

1 Discover live ranges
> Build SSA form
> At each φ-function, take the union of the arguments
> Rename to reflect these new “live ranges”

2 Compute LIVE sets over live ranges for each block
> Use an iterative data-flow solver
> Solve equations for LIVE over domain of live range names

3 Iterate over each block, from bottom to top
> Track the current LIVE set
> At each operation, add appropriate edges & update LIVE

– Add an edge from result to each value in LIVE
– Remove result from LIVE
– Add each operand to LIVE Update LIVE
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Computing LIVE Sets

A value v is live at p if ∃ a path from p to some
use of v along which v is not re-defined

Data-flow problems are expressed as simultaneous equations

LIVEOUT(b) = ∪s∈succ(b) LIVEIN(s)

LIVEIN(b) = UEVAR(b) ∪ (LIVEOUT(b) ∩ VARKILL(b))

LIVEOUT(nf) = ∅

where
UEVAR(b) is the set of names used in block b before being

defined in b
VARKILL(b) is the set of names defined in b

Solve the equations using a fixed-point iterative scheme

§ 9.2.1 in EaC
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Computing LIVE Sets
The  compiler can solve these equations with an
iterative algorithm

This is the world’s quickest introduction to data-flow analysis !

WorkList ← { all blocks }
while ( WorkList ≠  Ø)
    remove a block b from WorkList
    Compute LIVEOUT(b)
    Compute LIVEIN(b)
    if LIVEIN(b) changed
        then add pred (b) to WorkList

The Worklist Iterative
Algorithm

Why does this work?
• LIVEOUT, LIVEIN ⊆ 2Names

• UEVAR, VARKILL are constants
   for b
• Equations are monotone
• Finite # of additions to sets
⇒ will reach a fixed point !

Speed of convergence depends
on the order in which blocks are
“removed” & their sets
recomputed
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Observation on Coloring for Register Allocation
• Suppose you have k registers—look for a k coloring

• Any vertex n that has fewer than k neighbors in the
interference graph (n° < k) can always be colored !

— Pick any color not used by its neighbors — there must be one

• Ideas behind Chaitin’s algorithm:
— Pick any vertex n such that n°< k and put it on the stack
— Remove that vertex and all edges incident from the

interference graph
– This may make additional nodes have fewer than k neighbors

— At the end, if some vertex n still has k or more neighbors, then
spill the live range associated with n

— Otherwise successively pop vertices off the stack and color
them in the lowest color not used by some neighbor
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Chaitin’s Algorithm
1. While ∃ vertices with < k neighbors in GI

> Pick any vertex n such that n°< k and put it on the stack
> Remove that vertex and all edges incident to it from GI

• This will lower the degree of n’s neighbors

2. If GI is non-empty  (all vertices have k or more neighbors) then:
> Pick a vertex n (using some heuristic) and spill the live range

associated with n
> Remove vertex n from GI , along with all edges incident to it

and put it on the stack
> If this causes some vertex in GI to have fewer than k

neighbors, then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in
the lowest color not used by some neighbor
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice

2

3

4 5

3 Registers

Stack

1

Colors:

1:  

2:  

3:  



COMP 412,  Fall 2002 23Comp 412 Fall 2005

Chaitin’s Algorithm in Practice
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Improvement in Coloring Scheme

Optimistic Coloring     (Briggs, Cooper, Kennedy, and Torczon)
• If Chaitin’s algorithm reaches a state where every node has

k or more neighbors, it chooses a node to spill.
• Briggs said, take that same node and push it on the stack

— When you pop it off, a color might be available for it!

— For example, a node n might have k+2 neighbors, but those
neighbors might only use 3 (<k) colors

– Degree is a loose upper bound on colorability

2 Registers: Chaitin’s algorithm
immediately spills
one of these nodes
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Improvement in Coloring Scheme

Optimistic Coloring     (Briggs, Cooper, Kennedy, and Torczon)
• If Chaitin’s algorithm reaches a state where every node has

k or more neighbors, it chooses a node to spill.
• Briggs said, take that same node and push it on the stack

— When you pop it off, a color might be available for it!

— For example, a node n might have k+2 neighbors, but those
neighbors might only use 3 (<k) colors

— Degree is a loose upper bound on colorability

2 Registers:

2-colorable

Briggs algorithm
finds an available
color
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Chaitin-Briggs Algorithm
1. While ∃ vertices with < k neighbors in GI

> Pick any vertex n such that n°< k and put it on the stack
> Remove that vertex and all edges incident to it from GI

• This may create vertices with fewer than k neighbors

2. If GI  is non-empty (all vertices have k or more neighbors) then:
> Pick a vertex n (using some heuristic condition), push n on the

stack and remove n from GI , along with all edges incident to it
> If this causes some vertex in GI to have fewer than k

neighbors, then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in
the lowest color not used by some neighbor

> If some vertex cannot be colored, then pick an uncolored
vertex to spill, spill it, and restart at step 1
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Chaitin-Briggs in Practice
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Chaitin-Briggs in Practice
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Chaitin-Briggs Allocator (Bottom-up Coloring)

renumber

build

coalesce

spill costs

simplify

select

spill

Build SSA, build live ranges, rename

Build the interference graph

Fold unneeded copies
LRx→ LRy, and < LRx,LRy>  ∉ GI ⇒ combine LRx & LRy

Remove nodes from the graph

Spill uncolored definitions & uses

While stack is non-empty
    pop n, insert n into GI, & try to color it

Estimate cost for spilling
     each live range

while N is non-empty
    if ∃ n with n°< k then
         push n onto stack
    else pick n to spill
         push n onto stack
    remove n  from GI

Briggs’ algorithm     (1989)
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Picking a Spill Candidate
When ∀ n ∈ GI, n° ≥ k, simplify must pick a spill candidate

Chaitin’s heuristic
• Minimize spill cost ÷ current degree
• If LRx has a negative spill cost, spill it pre-emptively

— Cheaper to spill it than to keep it in a register
• If LRx has an infinite spill cost, it cannot be spilled

— No value dies between its definition & its use
— No more than k definitions since last value died      (safety valve)

Spill cost is weighted cost of loads & stores needed to spill x

Bernstein et al. suggest repeating simplify, select, & spill with
several different spill choice heuristics & keeping the best
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Other Improvements to Chaitin-Briggs
Spilling partial live ranges
• Bergner introduced interference region spilling
• Limits spilling to regions of high demand for registers

Splitting live ranges
• Simple idea — break up one or more live ranges
• Allocator can use different registers for distinct subranges
• Allocator can spill subranges independently  (use 1 spill location)

Conservative coalescing & Iterative coalescing
• Combining LRx→LRy to form LRxy may increase register pressure
• Limit coalescing to case where LRxy

° < k
• Iterative form tries to coalesce before spilling
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Chaitin-Briggs Allocator         (Bottom-up Global)
Strengths & weaknesses
↑ Precise interference graph
↑ Strong coalescing mechanism
↑ Handles register assignment well
↑ Runs fairly quickly

↓ Known to overspill in tight cases
↓ Interference graph has no geography
↓ Spills a live range everywhere
↓ Long blocks devolve into spilling by use counts

Is improvement still possible ?
• Rising spill costs, aggressive transformations, & long blocks

⇒ yes, it is


