

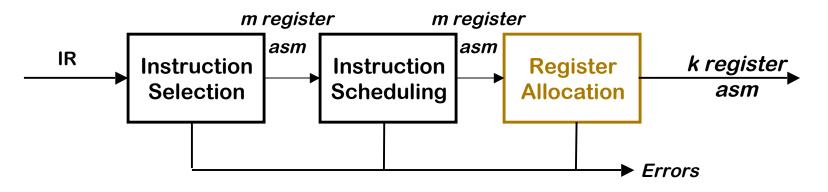
Global Register Allocation via Graph Coloring

COMP 412 Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Register Allocation

Part of the compiler's back end



Critical properties

- Produce <u>correct</u> code that uses k (or fewer) registers
- Minimize added loads and stores
- Minimize space used to hold *spilled values*
- Operate efficiently
 O(n), O(n log₂n), maybe O(n²), but not O(2ⁿ)

The big picture

Optimal global allocation is NP-Complete, under almost any assumptions.

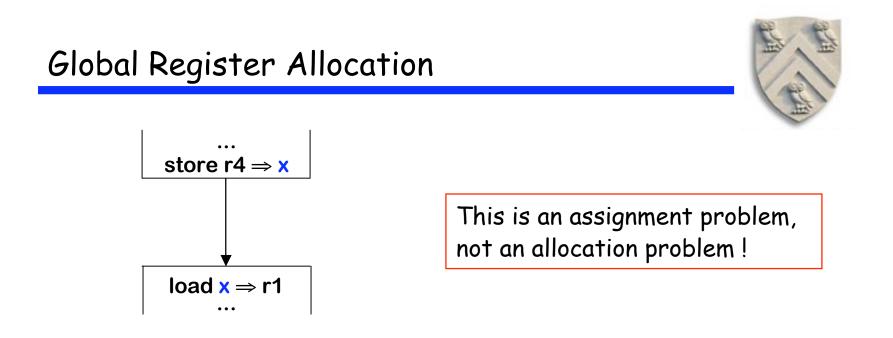
At each point in the code

- 1 Determine which values will reside in registers
- 2 Select a register for each such value

The goal is an allocation that "minimizes" running time

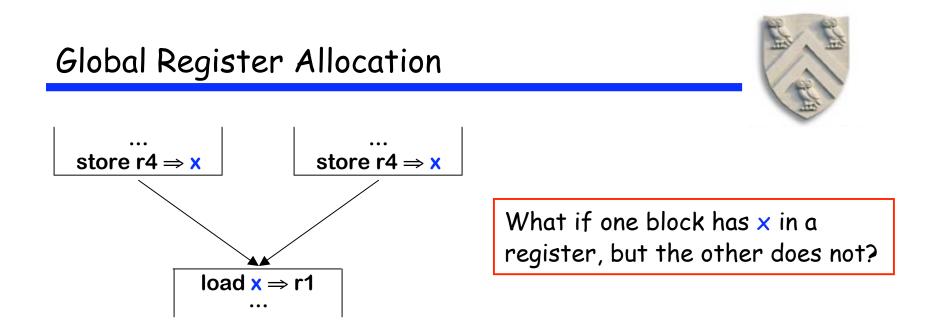
Most modern, global allocators use a graph-coloring paradigm

- Build a "conflict graph" or "interference graph"
- Find a k-coloring for the graph, or change the code to a nearby problem that it can k-color



What's harder across multiple blocks?

- Could replace a load with a move
- Good assignment would obviate the move
- Must build a control-flow graph to understand inter-block flow
- Can spend an inordinate amount of time adjusting the allocation



A more complex scenario

- Block with multiple predecessors in the control-flow graph
- Must get the "right" values in the "right" registers in each predecessor
- In a loop, a block can be its own predecessor

This adds tremendous complications

Global Register Allocation

Taking a global approach

- Abandon the distinction between local & global
- Make systematic use of registers or memory
- Adopt a general scheme to approximate a good allocation

Graph coloring paradigm

(Lavrov & (later) Chaitin)

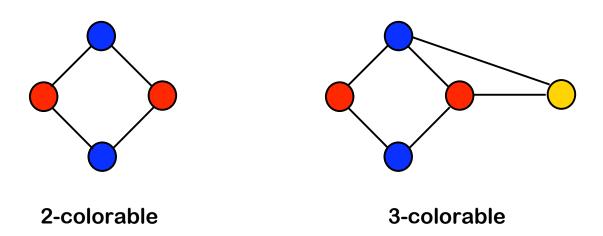
- 1 Build an interference graph G_I for the procedure
 - Computing LIVE is harder than in the local case
 - G_I is not an interval graph
- 2 (try to) construct a k-coloring
 - Minimal coloring is NP-Complete
 - Spill placement becomes a critical issue
- 3 Map colors onto physical registers

(A Background Digression)

The problem

A graph G is said to be *k*-colorable iff the nodes can be labeled with integers 1... k so that no edge in G connects two nodes with the same label

Examples



Each color can be mapped to a distinct physical register

Building the Interference Graph

What is an "interference" ? (or conflict)

- Two values *interfere* if there exists an operation where both are simultaneously live
- If x and y interfere, they cannot occupy the same register
- To compute interferences, we must know where values are "live"

The interference graph, $G_I = (N_I, E_I)$

- Nodes in *G*_I represent values, or live ranges
- Edges in G_I represent individual interferences – For x, $y \in N_I$, $\langle x, y \rangle \in E_I$ iff x and y interfere
- A k-coloring of G_I can be mapped into an allocation to k registers

Building the Interference Graph

To build the interference graph

- 1 Discover live ranges
 - > Build **SSA** form
 - > At each ϕ -function, take the union of the arguments
 - > Rename to reflect these new "live ranges"
- 2 Compute LIVE sets over live ranges for each block
 - > Use an iterative data-flow solver
 - > Solve equations for LIVE over domain of live range names
- 3 Iterate over each block, from bottom to top
 - > Track the current LIVE set
 - > At each operation, add appropriate edges & update LIVE

Update LIVE

- Add an edge from result to each value in LIVE
- Remove result from LIVE
- Add each operand to LIVE

A value v is live at p if \exists a path from p to some use of v along which v is not re-defined

Data-flow problems are expressed as simultaneous equations

LIVEOUT(b) = $\cup_{s \in succ(b)}$ LIVEIN(s)

LIVEIN(b) = UEVAR(b) \cup (LIVEOUT(b) \cap VARKILL(b))

 $LIVEOUT(n_f) = \emptyset$

§ 9.2.1 in EaC

where

UEVAR(b) is the set of names used in block b before being defined in b VARKILL(b) is the set of names defined in b

Solve the equations using a fixed-point iterative scheme

Computing LIVE Sets

The compiler can solve these equations with an iterative algorithm

```
WorkList ← { all blocks }
while ( WorkList ≠ Ø)
remove a block b from WorkList
Compute LIVEOUT(b)
Compute LIVEIN(b)
if LIVEIN(b) changed
then add pred (b) to WorkList
```

The Worklist Iterative Algorithm Why does this work?

- LIVEOUT, LIVEIN $\subseteq 2^{Names}$
- UEVAR, VARKILL are constants for b
- Equations are monotone
- Finite # of additions to sets
- ⇒ will reach a fixed point !

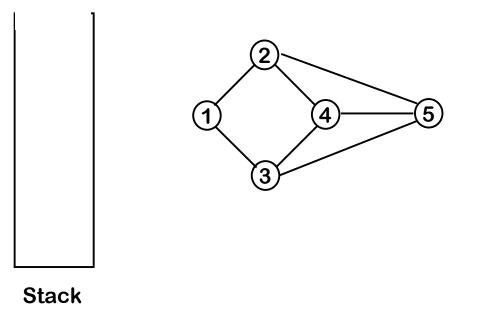
Speed of convergence depends on the order in which blocks are "removed" & their sets recomputed

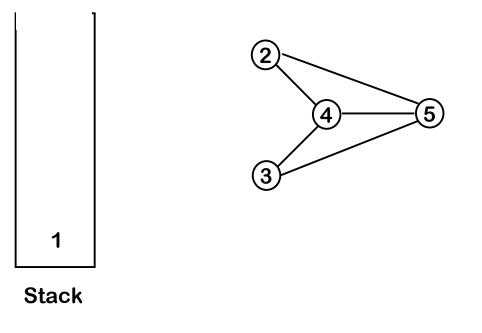
This is the world's quickest introduction to data-flow analysis!

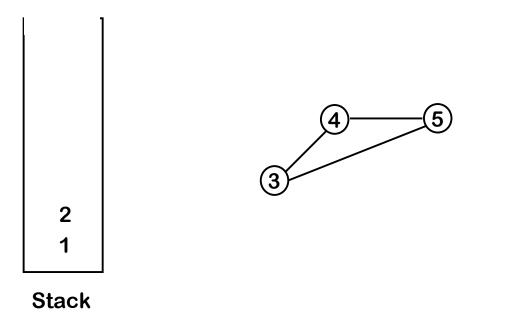
Observation on Coloring for Register Allocation

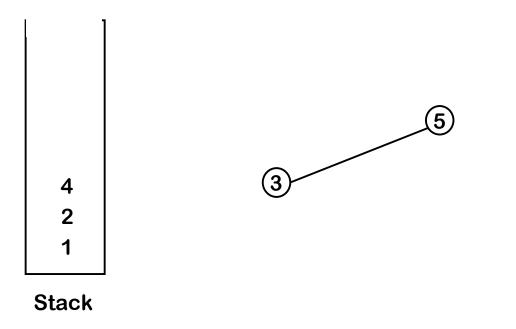
- Suppose you have k registers—look for a k coloring
- Any vertex n that has fewer than k neighbors in the interference graph (n° < k) can always be colored!
 - Pick any color not used by its neighbors there must be one
- Ideas behind Chaitin's algorithm:
 - Pick any vertex n such that $n^{\circ} < k$ and put it on the stack
 - Remove that vertex and all edges incident from the interference graph
 - This may make additional nodes have fewer than k neighbors
 - At the end, if some vertex n still has k or more neighbors, then spill the live range associated with n
 - Otherwise successively pop vertices off the stack and color them in the lowest color not used by some neighbor

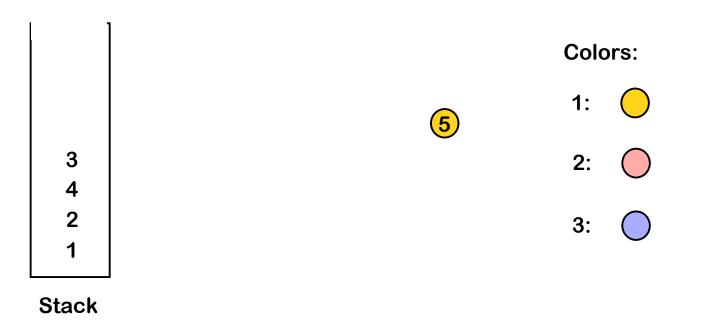
- 1. While \exists vertices with $\langle k$ neighbors in G_I
 - > Pick any vertex *n* such that $n^{\circ} < k$ and put it on the stack
 - > Remove that vertex and all edges incident to it from G_I
 - This will lower the degree of n's neighbors
- 2. If G_I is non-empty (all vertices have k or more neighbors) then:
 - > Pick a vertex n (using some heuristic) and spill the live range associated with n
 - Remove vertex n from G_I, along with all edges incident to it and put it on the stack
 - > If this causes some vertex in G_I to have fewer than k neighbors, then go to step 1; otherwise, repeat step 2
- 3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor

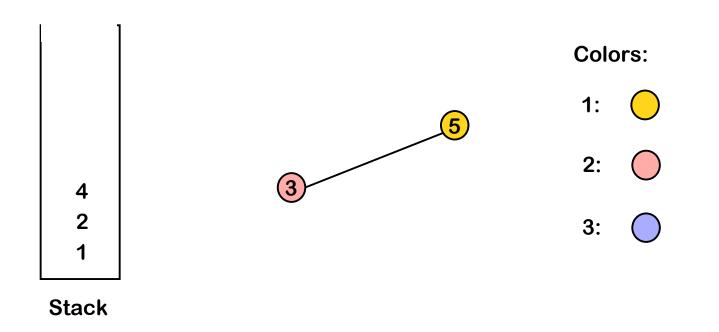




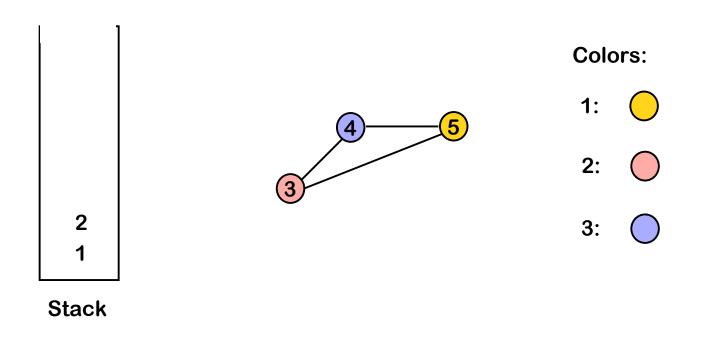


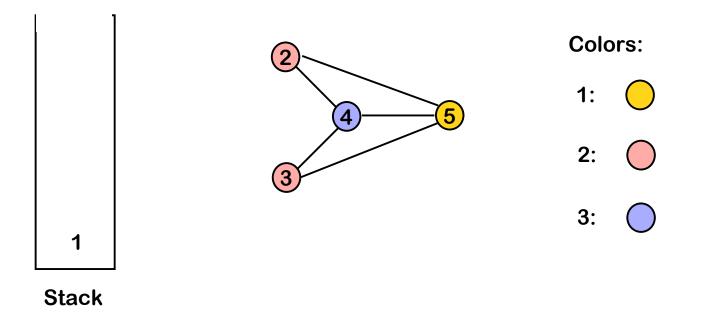


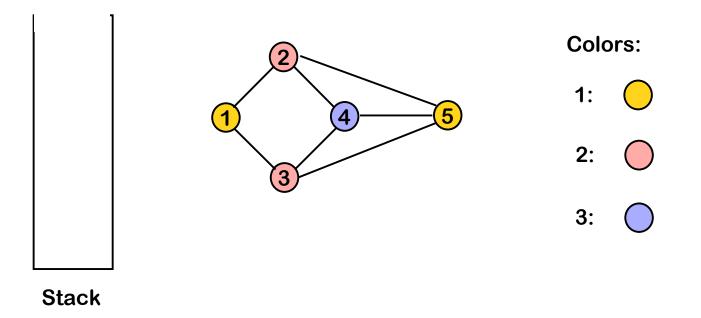




The second second



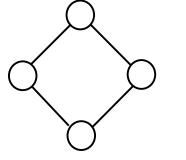




Optimistic Coloring (Briggs, Cooper, Kennedy, and Torczon)

- If Chaitin's algorithm reaches a state where every node has k or more neighbors, it chooses a node to spill.
- Briggs said, take that same node and push it on the stack
 - When you pop it off, a color might be available for it!

2 Registers:



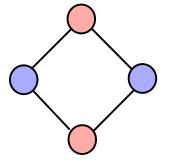
Chaitin's algorithm immediately spills one of these nodes

- For example, a node n might have k+2 neighbors, but those neighbors might only use 3 (<k) colors
 - Degree is a *loose upper bound* on colorability

Optimistic Coloring (Briggs, Cooper, Kennedy, and Torczon)

- If Chaitin's algorithm reaches a state where every node has k or more neighbors, it chooses a node to spill.
- Briggs said, take that same node and push it on the stack
 - When you pop it off, a color might be available for it!

2-colorable



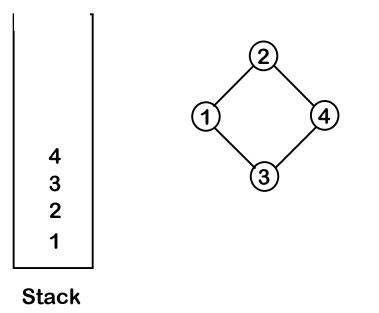
Briggs algorithm finds an available color

- For example, a node n might have k+2 neighbors, but those neighbors might only use 3 (<k) colors
- Degree is a *loose upper bound* on colorability

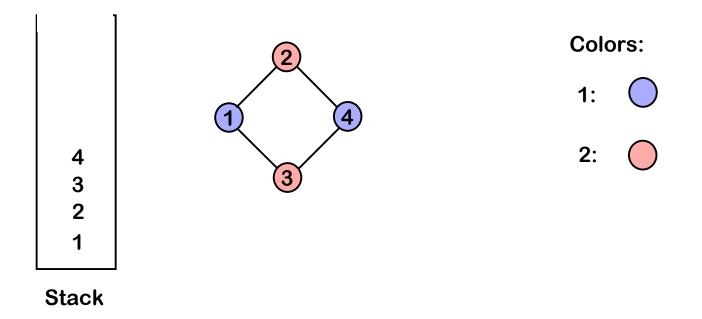
Chaitin-Briggs Algorithm

- 1. While \exists vertices with $\langle k$ neighbors in G_I
 - > Pick any vertex *n* such that $n^{\circ} < k$ and put it on the stack
 - > Remove that vertex and all edges incident to it from G_I
 - This may create vertices with fewer than k neighbors
- 2. If G_I is non-empty (all vertices have k or more neighbors) then:
 - > Pick a vertex n (using some heuristic condition), push n on the stack and remove n from G_I , along with all edges incident to it
 - > If this causes some vertex in G_I to have fewer than k neighbors, then go to step 1; otherwise, repeat step 2
- 3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor
 - > If some vertex cannot be colored, then pick an uncolored vertex to spill, spill it, and restart at step 1

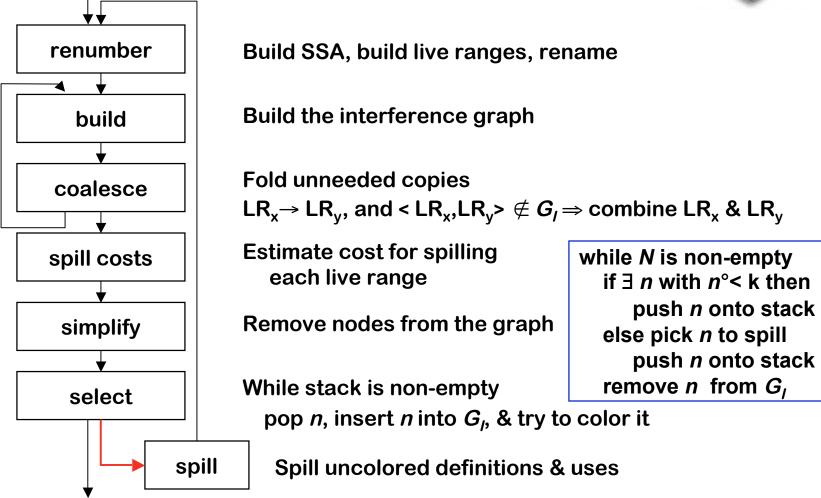
Chaitin-Briggs in Practice



Chaitin-Briggs in Practice



Chaitin-Briggs Allocator (Bottom-up Coloring)



Comp 412 Fall 2005

Briggs' algorithm (1989)

When $\forall n \in G_I$, $n^\circ \ge k$, simplify must pick a spill candidate

Chaitin's heuristic

- Minimize spill cost ÷ current degree
- If LR_x has a negative spill cost, spill it pre-emptively
 - Cheaper to spill it than to keep it in a register
- If LR_x has an infinite spill cost, it cannot be spilled
 - No value dies between its definition & its use
 - No more than k definitions since last value died (safety valve)

Spill cost is weighted cost of loads & stores needed to spill x

Bernstein *et al.* suggest repeating simplify, select, & spill with several different spill choice heuristics & keeping the best

Other Improvements to Chaitin-Briggs

Spilling partial live ranges

- Bergner introduced <u>interference region spilling</u>
- Limits spilling to regions of high demand for registers

Splitting live ranges

- Simple idea break up one or more live ranges
- Allocator can use different registers for distinct subranges
- Allocator can spill subranges independently (use 1 spill location)

Conservative coalescing & Iterative coalescing

- Combining $LR_x \rightarrow LR_y$ to form LR_{xy} may increase register pressure
- Limit coalescing to case where LR_{xy}° < k
- Iterative form tries to coalesce before spilling

Strengths & weaknesses

- Precise interference graph
- Strong coalescing mechanism
- ↑ Handles register assignment well
- Runs fairly quickly
- Known to overspill in tight cases
- Interference graph has no geography
- ↓ Spills a live range everywhere
- Long blocks devolve into spilling by use counts
- Is improvement still possible ?

(Bottom-up Global)