
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

Global Register Allocation
via Graph Coloring

COMP 412
Fall 2005

COMP 412, Fall 2002 2Comp 412 Fall 2005

Register Allocation
Part of the compiler’s back end

Critical properties
• Produce correct code that uses k (or fewer) registers
• Minimize added loads and stores
• Minimize space used to hold spilled values
• Operate efficiently

O(n), O(n log2n), maybe O(n2), but not O(2n)

Register
Allocation

Errors

IR Instruction
Selection

k register
asm

Instruction
Scheduling

m register

asm

m register

asm

COMP 412, Fall 2002 3Comp 412 Fall 2005

Global Register Allocation

The big picture

At each point in the code
1 Determine which values will reside in registers
2 Select a register for each such value
The goal is an allocation that “minimizes” running time

Most modern, global allocators use a graph-coloring paradigm
• Build a “conflict graph” or “interference graph”
• Find a k-coloring for the graph, or change the code to a

nearby problem that it can k-color

Register
Allocator

m register
 code

k register
 code

Optimal global allocation
is NP-Complete, under
almost any assumptions.

COMP 412, Fall 2002 4Comp 412 Fall 2005

Global Register Allocation

What’s harder across multiple blocks?
• Could replace a load with a move
• Good assignment would obviate the move
• Must build a control-flow graph to understand inter-block flow
• Can spend an inordinate amount of time adjusting the allocation

...
store r4 ⇒ x

load x ⇒ r1
...

This is an assignment problem,
not an allocation problem !

COMP 412, Fall 2002 5Comp 412 Fall 2005

Global Register Allocation

A more complex scenario
• Block with multiple predecessors in the control-flow graph
• Must get the “right” values in the “right” registers in each

predecessor
• In a loop, a block can be its own predecessor
This adds tremendous complications

...
store r4 ⇒ x

load x ⇒ r1
...

...
store r4 ⇒ x

What if one block has x in a
register, but the other does not?

COMP 412, Fall 2002 6Comp 412 Fall 2005

Global Register Allocation
Taking a global approach
• Abandon the distinction between local & global
• Make systematic use of registers or memory
• Adopt a general scheme to approximate a good allocation

Graph coloring paradigm (Lavrov & (later) Chaitin)
1 Build an interference graph GI for the procedure

— Computing LIVE is harder than in the local case
— GI is not an interval graph

2 (try to) construct a k-coloring
— Minimal coloring is NP-Complete
— Spill placement becomes a critical issue

3 Map colors onto physical registers

COMP 412, Fall 2002 7Comp 412 Fall 2005

Graph Coloring (A Background Digression)
The problem

A graph G is said to be k-colorable iff the nodes can be labeled
with integers 1… k so that no edge in G connects two nodes
with the same label

Examples

Each color can be mapped to a distinct physical register

2-colorable 3-colorable

COMP 412, Fall 2002 8Comp 412 Fall 2005

Building the Interference Graph
What is an “interference” ? (or conflict)
• Two values interfere if there exists an operation where both

are simultaneously live
• If x and y interfere, they cannot occupy the same register
To compute interferences, we must know where values are “live”

The interference graph, GI = (NI,EI)
• Nodes in GI represent values, or live ranges
• Edges in GI represent individual interferences

— For x, y ∈ NI, <x,y> ∈ EI iff x and y interfere
• A k-coloring of GI can be mapped into an allocation to k

registers

COMP 412, Fall 2002 9Comp 412 Fall 2005

Building the Interference Graph
To build the interference graph

1 Discover live ranges
> Build SSA form
> At each φ-function, take the union of the arguments
> Rename to reflect these new “live ranges”

2 Compute LIVE sets over live ranges for each block
> Use an iterative data-flow solver
> Solve equations for LIVE over domain of live range names

3 Iterate over each block, from bottom to top
> Track the current LIVE set
> At each operation, add appropriate edges & update LIVE

– Add an edge from result to each value in LIVE
– Remove result from LIVE
– Add each operand to LIVE Update LIVE

COMP 412, Fall 2002 10Comp 412 Fall 2005

Computing LIVE Sets

A value v is live at p if ∃ a path from p to some
use of v along which v is not re-defined

Data-flow problems are expressed as simultaneous equations

LIVEOUT(b) = ∪s∈succ(b) LIVEIN(s)

LIVEIN(b) = UEVAR(b) ∪ (LIVEOUT(b) ∩ VARKILL(b))

LIVEOUT(nf) = ∅

where
UEVAR(b) is the set of names used in block b before being

defined in b
VARKILL(b) is the set of names defined in b

Solve the equations using a fixed-point iterative scheme

§ 9.2.1 in EaC

COMP 412, Fall 2002 11Comp 412 Fall 2005

Computing LIVE Sets
The compiler can solve these equations with an
iterative algorithm

This is the world’s quickest introduction to data-flow analysis !

WorkList ← { all blocks }
while (WorkList ≠ Ø)
 remove a block b from WorkList
 Compute LIVEOUT(b)
 Compute LIVEIN(b)
 if LIVEIN(b) changed
 then add pred (b) to WorkList

The Worklist Iterative
Algorithm

Why does this work?
• LIVEOUT, LIVEIN ⊆ 2Names

• UEVAR, VARKILL are constants
 for b
• Equations are monotone
• Finite # of additions to sets
⇒ will reach a fixed point !

Speed of convergence depends
on the order in which blocks are
“removed” & their sets
recomputed

COMP 412, Fall 2002 12Comp 412 Fall 2005

Observation on Coloring for Register Allocation
• Suppose you have k registers—look for a k coloring

• Any vertex n that has fewer than k neighbors in the
interference graph (n° < k) can always be colored !

— Pick any color not used by its neighbors — there must be one

• Ideas behind Chaitin’s algorithm:
— Pick any vertex n such that n°< k and put it on the stack
— Remove that vertex and all edges incident from the

interference graph
– This may make additional nodes have fewer than k neighbors

— At the end, if some vertex n still has k or more neighbors, then
spill the live range associated with n

— Otherwise successively pop vertices off the stack and color
them in the lowest color not used by some neighbor

COMP 412, Fall 2002 13Comp 412 Fall 2005

Chaitin’s Algorithm
1. While ∃ vertices with < k neighbors in GI

> Pick any vertex n such that n°< k and put it on the stack
> Remove that vertex and all edges incident to it from GI

• This will lower the degree of n’s neighbors

2. If GI is non-empty (all vertices have k or more neighbors) then:
> Pick a vertex n (using some heuristic) and spill the live range

associated with n
> Remove vertex n from GI , along with all edges incident to it

and put it on the stack
> If this causes some vertex in GI to have fewer than k

neighbors, then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in
the lowest color not used by some neighbor

COMP 412, Fall 2002 14Comp 412 Fall 2005

Chaitin’s Algorithm in Practice

2

3

1 4 5

3 Registers

Stack

COMP 412, Fall 2002 15Comp 412 Fall 2005

Chaitin’s Algorithm in Practice

2

3

4 5

3 Registers

Stack

1

COMP 412, Fall 2002 16Comp 412 Fall 2005

Chaitin’s Algorithm in Practice

3

4 5

3 Registers

Stack

1
2

COMP 412, Fall 2002 17Comp 412 Fall 2005

Chaitin’s Algorithm in Practice

3

5

3 Registers

Stack

1
2
4

COMP 412, Fall 2002 18Comp 412 Fall 2005

Chaitin’s Algorithm in Practice

3 Registers

Stack

1
2
4
3

5

Colors:

1:

2:

3:

COMP 412, Fall 2002 19Comp 412 Fall 2005

Chaitin’s Algorithm in Practice

5

3 Registers

Stack

1
2
4
3

Colors:

1:

2:

3:

COMP 412, Fall 2002 20Comp 412 Fall 2005

Chaitin’s Algorithm in Practice

3

5

3 Registers

Stack

1
2
4

Colors:

1:

2:

3:

COMP 412, Fall 2002 21Comp 412 Fall 2005

Chaitin’s Algorithm in Practice

3

4 5

3 Registers

Stack

1
2

Colors:

1:

2:

3:

COMP 412, Fall 2002 22Comp 412 Fall 2005

Chaitin’s Algorithm in Practice

2

3

4 5

3 Registers

Stack

1

Colors:

1:

2:

3:

COMP 412, Fall 2002 23Comp 412 Fall 2005

Chaitin’s Algorithm in Practice

2

3

1 4 5

3 Registers

Stack

Colors:

1:

2:

3:

COMP 412, Fall 2002 24Comp 412 Fall 2005

Improvement in Coloring Scheme

Optimistic Coloring (Briggs, Cooper, Kennedy, and Torczon)
• If Chaitin’s algorithm reaches a state where every node has

k or more neighbors, it chooses a node to spill.
• Briggs said, take that same node and push it on the stack

— When you pop it off, a color might be available for it!

— For example, a node n might have k+2 neighbors, but those
neighbors might only use 3 (<k) colors

– Degree is a loose upper bound on colorability

2 Registers: Chaitin’s algorithm
immediately spills
one of these nodes

COMP 412, Fall 2002 25Comp 412 Fall 2005

Improvement in Coloring Scheme

Optimistic Coloring (Briggs, Cooper, Kennedy, and Torczon)
• If Chaitin’s algorithm reaches a state where every node has

k or more neighbors, it chooses a node to spill.
• Briggs said, take that same node and push it on the stack

— When you pop it off, a color might be available for it!

— For example, a node n might have k+2 neighbors, but those
neighbors might only use 3 (<k) colors

— Degree is a loose upper bound on colorability

2 Registers:

2-colorable

Briggs algorithm
finds an available
color

COMP 412, Fall 2002 26Comp 412 Fall 2005

Chaitin-Briggs Algorithm
1. While ∃ vertices with < k neighbors in GI

> Pick any vertex n such that n°< k and put it on the stack
> Remove that vertex and all edges incident to it from GI

• This may create vertices with fewer than k neighbors

2. If GI is non-empty (all vertices have k or more neighbors) then:
> Pick a vertex n (using some heuristic condition), push n on the

stack and remove n from GI , along with all edges incident to it
> If this causes some vertex in GI to have fewer than k

neighbors, then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in
the lowest color not used by some neighbor

> If some vertex cannot be colored, then pick an uncolored
vertex to spill, spill it, and restart at step 1

COMP 412, Fall 2002 27Comp 412 Fall 2005

Chaitin-Briggs in Practice

4

2

1

3

2 Registers

Stack

1
2
3
4

COMP 412, Fall 2002 28Comp 412 Fall 2005

Chaitin-Briggs in Practice

4

2

1

3

2 Registers

Stack

1
2
3
4

Colors:

1:

2:

COMP 412, Fall 2002 29Comp 412 Fall 2005

Chaitin-Briggs Allocator (Bottom-up Coloring)

renumber

build

coalesce

spill costs

simplify

select

spill

Build SSA, build live ranges, rename

Build the interference graph

Fold unneeded copies
LRx→ LRy, and < LRx,LRy> ∉ GI ⇒ combine LRx & LRy

Remove nodes from the graph

Spill uncolored definitions & uses

While stack is non-empty
 pop n, insert n into GI, & try to color it

Estimate cost for spilling
 each live range

while N is non-empty
 if ∃ n with n°< k then
 push n onto stack
 else pick n to spill
 push n onto stack
 remove n from GI

Briggs’ algorithm (1989)

COMP 412, Fall 2002 30Comp 412 Fall 2005

Picking a Spill Candidate
When ∀ n ∈ GI, n° ≥ k, simplify must pick a spill candidate

Chaitin’s heuristic
• Minimize spill cost ÷ current degree
• If LRx has a negative spill cost, spill it pre-emptively

— Cheaper to spill it than to keep it in a register
• If LRx has an infinite spill cost, it cannot be spilled

— No value dies between its definition & its use
— No more than k definitions since last value died (safety valve)

Spill cost is weighted cost of loads & stores needed to spill x

Bernstein et al. suggest repeating simplify, select, & spill with
several different spill choice heuristics & keeping the best

COMP 412, Fall 2002 31Comp 412 Fall 2005

Other Improvements to Chaitin-Briggs
Spilling partial live ranges
• Bergner introduced interference region spilling
• Limits spilling to regions of high demand for registers

Splitting live ranges
• Simple idea — break up one or more live ranges
• Allocator can use different registers for distinct subranges
• Allocator can spill subranges independently (use 1 spill location)

Conservative coalescing & Iterative coalescing
• Combining LRx→LRy to form LRxy may increase register pressure
• Limit coalescing to case where LRxy

° < k
• Iterative form tries to coalesce before spilling

COMP 412, Fall 2002 32Comp 412 Fall 2005

Chaitin-Briggs Allocator (Bottom-up Global)
Strengths & weaknesses
↑ Precise interference graph
↑ Strong coalescing mechanism
↑ Handles register assignment well
↑ Runs fairly quickly

↓ Known to overspill in tight cases
↓ Interference graph has no geography
↓ Spills a live range everywhere
↓ Long blocks devolve into spilling by use counts

Is improvement still possible ?
• Rising spill costs, aggressive transformations, & long blocks

⇒ yes, it is

