
Optimization:
GCSE, GDFA, SSA, …

COMP 412
Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of
these materials for their personal use.

2

What About Larger Scopes?

Two interesting approaches
• Change IR to represent context
 in an explicit way (SSA form)
• Perform global analysis to determine
 what facts hold on entry to F & G
Approaches lead to different algorithms
• SSA form leads to fast, value-based
 technique using strong notions from
 control-flow analysis (DVNT, §8.5.2 in EaC)
• Global analysis leads to classic formulation of redunancy

analysis as a problem in global data-flow analysis
– Syntactic equivalence rather than value equivalence

G

m0 ← a + b
n0 ← a + b

A

p0 ← c + d
r0 ← c + d

B

r2 ← φ(r0,r1)
y0 ← a + b
z0 ← c + d

q0 ← a + b
r1 ← c + d

C

e0 ← b + 18
s0 ← a + b
u0 ← e + f

D e1 ← a + 17
t0 ← c + d
u1 ← e + f

E

e3 ← φ(e0,e1)
u2 ← φ(u0,u1)
v0 ← a + b
w0 ← c + d
x0 ← e + f

F

3

Global Common Subexpression Elimination

The goal

Find common subexpressions whose range spans basic
blocks, and eliminate unnecessary re-evaluations

Safety

• Available expressions proves that the replacement value is
current

• Transformation must ensure right name→value mapping

Profitability

• Don’t add any evaluations

• Add some copy operations

• Copies are inexpensive
• Many copies coalesce away
• Copies can shrink or stretch

live ranges
*

4

Global Common Subexpression Elimination

The Big Picture
 Assume, wlog, that we can annotate each block b with a set

AVAIL(b) such that AVAIL(b) contains all the expressions
that have been previously computed, on every path reaching
b, and would produce the same result on entry to b

The Plan
1. Compute AVAIL sets
2. Assign each expression in AVAIL a unique name
3. Replace redundant uses of expressions in AVAIL

→ x+y ∈ some AVAIL set, at each evaluation of x+y, assign the
newly computed value to its unique name

→ x+y ∈ AVAIL(b), and x+y is evaluated before either x or y is
redefined in b, replace x+y with a reference to its unique name

Many ways to
achieve this goal

5

Computing AVAIL
Initial information
• DEExpr(b) — expressions defined in b and available on exit

– Downward Exposed Expressions

• ExprKill(b) — expressions that are killed in b
– An expression is killed one of its inputs is assigned a value

Now,

AVAIL(b) = ∩p in Pred(b)(DEExpr(p) ∪ (AVAIL(p) ∩ ExprKill(i)))

• What is the starting value for AVAIL(b)? AVAIL(b0)?
• How do we solve this set of simultaneous equations?

6

Round-robin Iterative Algorithm

• Termination: does it halt?
• Correctness: what answer does it produce?
• Speed: how quickly does it find that answer?

AVAIL(b0) ← Ø

for i ← 1 to N
AVAIL(bi) ← { all expressions }

change ← true

while (change)
change ← false

 for i ← 0 to N
TEMP ← ∩x∈pred (bi)

 (DEEXPR (x) ∪ (AVAIL(x) ∩ EXPRKILL(x)))
if AVAIL(bi) ≠ TEMP then

change ← true
 AVAIL(bi) ← TEMP

The round-robin solver is
easier to analyze than the
more efficient worklist
solver.

7

Concrete Example: Available Expressions

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

E = {a+b,c+d,e+f,a+17,b+18}

2E is the set of all subsets of E

2E = [{a+b,c+d,e+f,a+17,b+18},
{a+b,c+d,e+f,a+17},
{a+b,c+d,e+f,b+18},
{a+b,c+d,a+17,b+18},
{a+b,e+f,a+17,b+18},
{c+d,e+f,a+17,b+18}, {a+b,c+d,e+f},
{a+b,c+d,b+18}, {a+b,c+d,a+17},
{a+b,e+f,a+17},
{a+b,e+f,b+18},{a+b,a+17,b+18},
{c+d,e+f,a+17}, {c+d,e+f,b+18},
{c+d,a+17,b+18},{e+f,a+17,b+18},
{a+b,c+d},{a+b,e+f},{a+b,a+17},
{a+b,b+18},{c+d,e+f},{c+d,a+17},
{c+d,b+18},{e+f,a+17},{e+f,b+18},
{a+17,b+18},{a+b}, {c+d}, {e+f}, {a+17},
{b+18}, {}]

8

Making Theory Concrete

Computing AVAIL for the example
AVAIL(A) = Ø
AVAIL(B) = {a+b} ∪ (Ø ∩ all)

= {a+b}
AVAIL(C) = {a+b}
AVAIL(D) = {a+b,c+d} ∪ ({a+b} ∩ all)

= {a+b,c+d}
AVAIL(E) = {a+b,c+d}
AVAIL(F) = [{b+18,a+b,e+f} ∪

 ({a+b,c+d} ∩ {all - e+f})]
 ∩ [{a+17,c+d,e+f} ∪
 ({a+b,c+d} ∩ {all - e+f})]
= {a+b,c+d,e+f}

AVAIL(G) = [{c+d} ∪ ({a+b} ∩ all)]
∩ [{a+b,c+d,e+f} ∪
 ({a+b,c+d,e+f} ∩ all)]
= {a+b,c+d}

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

A B C D E F G
DEEXPR a+b c+d a+b,c+d b+18,a+b,e+f a+17,c+d,e+f a+b,c+d,e+f a+b,c+d
EXPRKILL { } { } { } e+f e+f { } { }

*

9

Making Theory Concrete

Computing AVAIL for the example
Using AVAIL information in
conjunction with local value
numbering (LVN) can find all of
the redundancy in this example.

In fact, if we initialize the hash
table with the AVAIL set for the
block, we can use LVN to perform
all of our replacements.

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

The Plan
1. Compute AVAIL Sets
2. Assign a unique name to each expr.

that appears in an AVAIL set
3. Replace evaluations with references,

as legal

recall

10

SSA Name Space (in general)

Two principles
• Each name is defined by exactly one operation
• Each operand refers to exactly one definition

To reconcile these principles with real code
• Add subscripts to variable names for uniqueness
• Insert φ-functions at merge points to reconcile name space

x ← ... x ← ...

... ← x + ...

x0 ← ... x1 ← ...

x2 ←φ(x0,x1)
 ← x2 + ...

becomes

11

SSA Name Space

About these φ-functions …
• A φ-function occurs at the start of a block
• A φ-function has one argument for each CFG edge entering

the block
• A φ-function returns the argument that corresponds to the

edge along which control flow entered the block
– All φ-functions in the block execute concurrently
– Since machines do not support φ-functions, must translate back

out of SSA form before we produce executable code

• Using SSA form leads to simpler or better formulations of
many optimizations (alternative to global data-flow analysis)

12

Building SSA

SSA Form
• Each name is defined exactly once
• Each use refers to exactly one name

What’s Hard?
• Straight-line code is easy
• Split points are easy
• Merge points are hard

(Sloppy) Construction Algorithm
• Insert a φ-function for each variable at each merge point
• Rename all values for uniqueness (using subscripts)

This approach
• Inserts too many φ-
functions
• Inserts φ-functions in
too many places
The rest, however, is
optimization & beyond
the scope of today’s
lecture. (See §9 in EaC)

