
Introduction to Optimization

COMP 412
Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of
these materials for their personal use.

2

Traditional Three-pass Compiler

Code Improvement (or Optimization)
• Analyzes IR and rewrites (or transforms) IR

• Primary goal is to reduce running time of the compiled code
– May also improve space, power consumption, …

• Must preserve “meaning” of the code
– Measured by values of named variables
– A course (or two) unto itself

Errors

Source
Code

OptimizerFront
End

Machine
code

Back
End

IR IR

3

The Optimizer

Typical Transformations
• Discover & propagate some constant value
• Move a computation to a less frequently executed place
• Specialize some computation based on context
• Discover a redundant computation & remove it
• Remove useless or unreachable code
• Encode an idiom in some particularly efficient form

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

4

The Role of the Optimizer
• The compiler can implement a procedure in many ways
• The optimizer tries to find an implementation that is “better”

– Speed, code size, data space, …

To accomplish this, it
• Analyzes the code to derive knowledge about run-time behavior

– Data-flow analysis, pointer disambiguation, …
– General term is “static analysis”

• Uses that knowledge in an attempt to improve the code
– Literally hundreds of transformations have been proposed
– Large amount of overlap between them

Nothing “optimal” about optimization
• Proofs of optimality assume restrictive & unrealistic conditions

5

Scalar Optimization

• Uniprocessor optimization
– Applied at a low level of abstraction (near assembly)
– Targets performance on a single processor
– Usually excludes issues that require near-source analysis

→Memory hierarchy, loop-level parallelism

• Transformations a sophisticated user would expect
– Constant folding, redundancy elimination, dead code elimination
– Code motion, operator strength reduction, …

Among the most effective scalar optimizations are
• Register allocation, constant folding, redundancy elimination

6

Redundancy Elimination as an Example

An expression x+y is redundant if and only if, along every
path from the procedure’s entry, it has been evaluated, and its
constituent subexpressions (x & y) have not been re-defined.

If the compiler can prove that an expression is redundant
• It can preserve the results of earlier evaluations
• It can replace the current evaluation with a reference

Two pieces to the problem
• Proving that x+y is redundant, or available
• Rewriting the code to eliminate the redundant evaluation

One technique for accomplishing both is called value numbering

7

Value Numbering

The key notion
• Assign an identifying number, V(n), to each expression

– V(x+y) = V(j) iff x+y and j always have the same value
– Use hashing over the value numbers to make it efficient

• Use these numbers to improve the code

Improving the code
• Replace redundant expressions

– Same VN ⇒ refer rather than recompute

• Simplify algebraic identities
• Discover constant-valued expressions, fold & propagate them
• Technique designed for low-level, linear I Rs, similar methods

exist for trees (e.g., build a DAG)

Local algorithm due to Balke
(1968) or Ershov (1954)

Within a basic block;
definition becomes more
complex across blocks

8

Local Value Numbering

The Algorithm
For each operation o = <operator, o1, o2> in the block, in order
1 Get value numbers for operands from hash lookup
2 Hash <operator,VN(o1),VN(o2)> to get a value number for o
3 If o already had a value number, replace o with a reference
4 If o1 & o2 are constant, evaluate it & replace with a loadI

If hashing behaves, the algorithm runs in linear time
– If not, use multi-set discrimination (see p. 251 in EaC)

Handling algebraic identities
• Case statement on operator type
• Handle special cases within each operator

9

Local Value Numbering

An example

With VNs

 a3 ← x1 + y2

∗ b3 ← x1 + y2

 a4 ← 17
∗ c3 ← x1 + y2

Rewritten

 a3 ← x1 + y2

∗ b3 ← a3

 a4 ← 17
∗ c3 ← a3 (oops!)

Options:

• Use c3
 ← b3

• Save a3 in t3

• Rename around it

Original Code
 a ← x + y
∗ b ← x + y
 a ← 17
∗ c ← x + y

Two redundancies:

• Eliminate stmts
 with a ∗

• Coalesce results ?

10

Local Value Numbering

Example (continued):

With VNs
 a0

3 ← x0
1 + y0

2

∗ b0
3 ← x0

1 + y0
2

 a1
4 ← 17

∗ c0
3 ← x0

1 + y0
2

Notation:

• While complex,
 the meaning is
 clear

Original Code
 a0 ← x0 + y0
∗ b0 ← x0 + y0
 a1 ← 17
∗ c0 ← x0 + y0

Renaming:

• Give each value a
 unique name

• Makes it clear

Rewritten
 a0

3 ← x0
1 + y0

2

∗ b0
3 ← a0

3

 a1
4 ← 17

∗ c0
3 ← a0

3

Result:

• a0
3 is available

• Rewriting now
 works

11

Local Value Numbering

Example (continued):

Original Code
 a0 ← x0 + y0
∗ b0 ← x0 + y0
 a1 ← 17
∗ c0 ← x0 + y0

Renaming:

• Give each value a
 unique name

• Makes it clear

Renaming to provide a unique name for
each definition is the key idea underlying
Static Single Assignment form (SSA form)

12

Simple Extensions to Value Numbering

Constant folding

• Add a bit that records when a value is constant

• Evaluate constant values at compile-time

• Replace with load immediate or immediate operand

• No stronger local algorithm

Algebraic identities

• Must check (many) special cases

• Replace result with input VN

• Build a decision tree on operation

Identities (on VNs) :

x←y, x+0, x-0, x∗1, x÷1, x-x, x∗0,
x÷x, x∨0, x ∧ 0xFF…FF,
max(x,MAXINT), min(x,MININT),
max(x,x), min(y,y), and so on ...

13

Safety & Value Numbering

Why is local value numbering safe?
• Hash table starts empty
• Expressions placed in table as processed
• If <operator,VN(o1),VN(o2)> is in the table, then

– It has already occurred at least once in the block
– Neither o1 nor o2 have been subsequently redefined

→ The mapping uses VN(o1) and VN(o2), not o1 and o2
If <operator,VN(o1),VN(o2)> has a VN, the compiler can safely use it

• Algorithm incrementally constructs a proof that
<operator,VN(o1),VN(o2)> is redundant

• Algorithm modifies the code, but does not invalidate the table

14

When is local value numbering profitable?

• If reuse is cheaper than re-computation
– Does not cause a spill or a copy (hard to determine)
– In practice, assumed to be true

• Local constant folding is always profitable
– Re-computing uses a register, as does load immediate
– Immediate form of operation avoids even that cost

• Algebraic identities
– If it eliminates an operation, it is profitable (x + 0)
– Profitability of simplification depends on target (2x ⇒ x+x)
– Easy to factor into design (don’t do the unprofitable ones!)

Profitability & Value Numbering

15

Missed opportunities
(need stronger methods)

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

Local Value Numbering

Local Value Numbering
• 1 block at a time

• Strong local results

• No cross-block effects

*

16

An Aside on Terminology

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

Control-flow graph (CFG)
• Nodes for basic blocks
• Edges for branches
• Basis for much of program

analysis & transformation

This CFG, G = (N,E)
• N = {A,B,C,D,E,F,G}
• E = {(A,B),(A,C),(B,G),(C,D),

(C,E),(D,F),(E,F),(F,E)}
• |N| = 7, |E| = 8

17

Extended Basic Blocks

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

An Extended Basic Block (EBB)
• Set of blocks b1, b2, …, bn

• b1 has > 1 predecessor
• All other bi have 1 predecessor
• EBBs provide more context for
 optimization than single blocks

*

18

Extended Basic Blocks

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

An EBB contains 1 or more path
If b1, b2, …, bn is a path
• b1 has > 1 predecessor
• bi has 1 predecessor, bi-1

*

{A, B, C, D, E} is an EBB
 ⇒ {A,B}, {A,C,D}, and {A,C,E} are
 paths in {A, B, C, D, E}

{F} and {G} are also EBBs
⇒ They have only trivial paths

19

Superlocal Value Numbering

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F
The Concept

• Apply local method to each
 path in the EBB

• Do {A,B}, {A,C,D}, & {A,C,E}

• Obtain reuse from ancestors

• Does not help with F or G

• Key: avoid re-analyzing A & C
*

20

Superlocal Value Numbering

Efficiency
• Use A’s table to initialize tables for B & C
• To avoid duplication, use a scoped hash table

– A, AB, A, AC, ACD, AC, ACE, F, G
• Need a VN → name mapping to handle kills

– Must restore map with scope
– Adds complication, not cost

To simplify matters
• Unique name for each definition
• Makes name ⇔ VN
• Use the SSA name space

EaC: § 5.7.3 & App. B

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

Subscripted names
from example in last

lecture

21

What About Larger Scopes?

We have not helped with F or G
• Multiple predecessors
• Not part of an EBB
• “Traces” do not capture safety
 conditions (value known on all paths)

• Must decide what facts hold in F and in G
– For G, combine B & F?
– Merging state is expensive
– Fall back on what’s known

G

m0 ← a + b
n0 ← a + b

A

p0 ← c + d
r0 ← c + d

B

r2 ← φ(r0,r1)
y0 ← a + b
z0 ← c + d

q0 ← a + b
r1 ← c + d

C

e0 ← b + 18
s0 ← a + b
u0 ← e + f

D e1 ← a + 17
t0 ← c + d
u1 ← e + f

E

e3 ← φ(e0,e1)
u2 ← φ(u0,u1)
v0 ← a + b
w0 ← c + d
x0 ← e + f

F

22

What About Larger Scopes?

Two interesting approaches
• Change IR to represent context
 in an explicit way (SSA form)
• Perform global analysis to determine
 what facts hold on entry to F & G
Approaches lead to different algorithms
• SSA form leads to fast, value-based
 technique using strong notions from
 control-flow analysis (DVNT, §8.5.2 in EaC)
• Global analysis leads to classic formulation of redunancy

analysis as a problem in global data-flow analysis
– Syntactic equivalence rather than value equivalence

G

m0 ← a + b
n0 ← a + b

A

p0 ← c + d
r0 ← c + d

B

r2 ← φ(r0,r1)
y0 ← a + b
z0 ← c + d

q0 ← a + b
r1 ← c + d

C

e0 ← b + 18
s0 ← a + b
u0 ← e + f

D e1 ← a + 17
t0 ← c + d
u1 ← e + f

E

e3 ← φ(e0,e1)
u2 ← φ(u0,u1)
v0 ← a + b
w0 ← c + d
x0 ← e + f

F

