# Introduction to Optimization 

## COMP 412 <br> Fall 2005

```
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.
```


## Traditional Three-pass Compiler



Code Improvement (or Optimization)

- Analyzes IR and rewrites (or transforms) IR
- Primary goal is to reduce running time of the compiled code
- May also improve space, power consumption, ...
- Must preserve "meaning" of the code
- Measured by values of named variables
- A course (or two) unto itself


## The Optimizer



Modern optimizers are structured as a series of passes
Typical Transformations

- Discover \& propagate some constant value
- Move a computation to a less frequently executed place
- Specialize some computation based on context
- Discover a redundant computation \& remove it
- Remove useless or unreachable code
- Encode an idiom in some particularly efficient form


## The Role of the Optimizer

- The compiler can implement a procedure in many ways
- The optimizer tries to find an implementation that is "better"
- Speed, code size, data space, ...

To accomplish this, it

- Analyzes the code to derive knowledge about run-time behavior
- Data-flow analysis, pointer disambiguation, ...
- General term is "static analysis"
- Uses that knowledge in an attempt to improve the code
- Literally hundreds of transformations have been proposed
- Large amount of overlap between them

Nothing "optimal" about optimization

- Proofs of optimality assume restrictive \& unrealistic conditions


## Scalar Optimization

- Uniprocessor optimization
- Applied at a low level of abstraction (near assembly)
- Targets performance on a single processor
- Usually excludes issues that require near-source analysis
$\rightarrow$ Memory hierarchy, loop-level parallelism
- Transformations a sophisticated user would expect
- Constant folding, redundancy elimination, dead code elimination
- Code motion, operator strength reduction, ...

Among the most effective scalar optimizations are

- Register allocation, constant folding, redundancy elimination


## Redundancy Elimination as an Example

An expression $x+y$ is redundant if and only if, along every path from the procedure's entry, it has been evaluated, and its constituent subexpressions ( $x \& y$ ) have not been re-defined.

If the compiler can prove that an expression is redundant

- It can preserve the results of earlier evaluations
- It can replace the current evaluation with a reference

Two pieces to the problem

- Proving that $x+y$ is redundant, or available
- Rewriting the code to eliminate the redundant evaluation

One technique for accomplishing both is called value numbering

## Value Numbering

The key notion

- Assign an identifying number, $V(n)$, to each expression
- $V(x+y)=V(j)$ iff $x+y$ and $j$ always have the same value
- Use hashing over the value numbers to make it efficient
- Use these numbers to improve the code

Improving the code

```
Within a basic block;
definition becomes more complex across blocks
```

- Replace redundant expressions
- Same VN $\Rightarrow$ refer rather than recompute
- Simplify algebraic identities
- Discover constant-valued expressions, fold \& propagate them
- Technique designed for low-level, linear IRs, similar methods exist for trees (e.g., build a DAG)


## Local Value Numbering

The Algorithm
For each operation $0=$ soperator, $\mathrm{o}_{1}, \mathrm{o}_{2}>$ in the block, in order
1 Get value numbers for operands from hash lookup
2 Hash <operator, $\mathrm{VN}\left(\mathrm{O}_{1}\right), \mathrm{VN}\left(\mathrm{O}_{2}\right)$ to get a value number for 0
3 If o already had a value number, replace o with a reference
4 If $\mathrm{o}_{1} \& \mathrm{o}_{2}$ are constant, evaluate it \& replace with a loadI
If hashing behaves, the algorithm runs in linear time

- If not, use multi-set discrimination
(see p. 251 in EaC)
Handling algebraic identities
- Case statement on operator type
- Handle special cases within each operator


## Local Value Numbering

An example

| Original Code |  |
| ---: | :--- |
|  | $a \leftarrow x+y$ |
| $* b \leftarrow x+y$ |  |
|  | $a \leftarrow 17$ |
| $*$ | $c \leftarrow x+y$ |

$$
\begin{aligned}
& \text { With VNs } \\
& a^{3} \leftarrow x^{1}+y^{2} \\
* & b^{3} \leftarrow x^{1}+y^{2} \\
& a^{4} \leftarrow 17 \\
* & c^{3} \leftarrow x^{1}+y^{2}
\end{aligned}
$$

Two redundancies:

- Eliminate stmts with a*
- Coalesce results ?

$$
\begin{aligned}
& \quad \text { Rewritten } \\
& a^{3} \leftarrow x^{1}+y^{2} \\
& * b^{3} \leftarrow a^{3} \\
& a^{4} \leftarrow 17 \\
& * c^{3} \leftarrow a^{3} \quad \text { (oops!) }
\end{aligned}
$$

Options:

- Use $c^{3} \leftarrow b^{3}$
- Save $a^{3}$ in $t^{3}$
- Rename around it


## Local Value Numbering

Example (continued):

| Original Code | With VNs | Rewritten |
| :---: | :---: | :---: |
| $\mathrm{a}_{0} \leftarrow \mathrm{x}_{0}+\mathrm{y}_{0}$ | $\mathrm{a}_{0}{ }^{3} \leftarrow \mathrm{x}_{0}{ }^{1}+\mathrm{y}_{0}{ }^{2}$ | $\mathrm{a}_{0}{ }^{3} \leftarrow \mathrm{x}_{0}{ }^{1}+\mathrm{y}_{0}{ }^{2}$ |
| $* \mathrm{~b}_{0} \leftarrow \mathrm{x}_{0}+\mathrm{y}_{0}$ | $* \mathrm{~b}_{0}{ }^{3} \leftarrow \mathrm{x}_{0}{ }^{1+\mathrm{y}_{0}{ }^{2}}$ | $* \mathrm{~b}_{0}{ }^{3} \leftarrow \mathrm{a}_{0}{ }^{3}$ |
| $\mathrm{a}_{1} \leftarrow 17$ | $\mathrm{a}_{1}{ }^{4} \leftarrow 17$ | $\mathrm{a}_{1}{ }^{4} \leftarrow 17$ |
| $* \mathrm{c}_{0} \leftarrow \mathrm{x}_{0}+\mathrm{y}_{0}$ | $* \mathrm{c}_{0}{ }^{3} \leftarrow \mathrm{x}_{0}{ }^{1}+\mathrm{y}_{0}{ }^{2}$ | $* \mathrm{c}_{0}{ }^{3} \leftarrow \mathrm{a}_{0}{ }^{3}$ |

Renaming:

- Give each value a unique name
- Makes it clear

$$
\begin{aligned}
& \text { With VNs } \\
& \mathrm{a}_{0}{ }^{3} \leftarrow \mathrm{x}_{0}{ }^{1}+\mathrm{y}_{0}{ }^{2} \\
* & \mathrm{~b}_{0}{ }^{3} \leftarrow \mathrm{x}_{0}{ }^{+} \mathrm{y}_{0}{ }^{2} \\
& \mathrm{a}_{1}^{4} \leftarrow 17 \\
* & \mathrm{c}_{0}{ }^{3} \leftarrow \mathrm{x}_{0}{ }^{1}+\mathrm{y}_{0}{ }^{2}
\end{aligned}
$$

Notation:

- While complex, the meaning is clear

Result:

- $a_{0}{ }^{3}$ is available
- Rewriting now works


## Local Value Numbering

Example (continued):


Renaming:

- Give each value a unique name
- Makes it clear


## Simple Extensions to Value Numbering

Constant folding

- Add a bit that records when a value is constant
- Evaluate constant values at compile-time
- Replace with load immediate or immediate operand
- No stronger local algorithm

Algebraic identities

- Must check (many) special cases
- Replace result with input VN
- Build a decision tree on operation


## Safety \& Value Numbering

Why is local value numbering safe?

- Hash table starts empty
- Expressions placed in table as processed
- If <operator, $\mathrm{VN}\left(\mathrm{o}_{1}\right), \mathrm{VN}\left(\mathrm{o}_{2}\right)$ > is in the table, then
- It has already occurred at least once in the block
- Neither $o_{1}$ nor $o_{2}$ have been subsequently redefined
$\rightarrow$ The mapping uses $\mathrm{VN}\left(\mathrm{O}_{1}\right)$ and $\mathrm{VN}\left(\mathrm{O}_{2}\right)$, not $\mathrm{o}_{1}$ and $\mathrm{o}_{2}$
If <operator, $\mathrm{VN}\left(\mathrm{O}_{1}\right), \mathrm{VN}\left(\mathrm{O}_{2}\right)$ > has a VN , the compiler can safely use it
- Algorithm incrementally constructs a proof that <operator, $\mathrm{VN}\left(\mathrm{o}_{1}\right), \mathrm{VN}\left(\mathrm{o}_{2}\right)$ > is redundant
- Algorithm modifies the code, but does not invalidate the table


## Profitability \& Value Numbering

When is local value numbering profitable?

- If reuse is cheaper than re-computation
- Does not cause a spill or a copy
- In practice, assumed to be true
- Local constant folding is always profitable
- Re-computing uses a register, as does load immediate
- Immediate form of operation avoids even that cost
- Algebraic identities
- If it eliminates an operation, it is profitable $\quad(x+0)$
- Profitability of simplification depends on target $\quad(2 x \Rightarrow x+x)$
- Easy to factor into design (don't do the unprofitable ones!)


## Local Value Numbering



## An Aside on Terminology



## Extended Basic Blocks



## Extendedpasic Blocks



## Superlocal Value Numbering



## Superlocal Value Numbering

## Efficiency

- Use A's table to initialize tables for $B \& \sqrt{C}$ Eac: §5.7.3 \& App. B
- To avoid duplication, use a scoped hash table
- $A, A B, A, A C, A C D, A C, A C E, F, G$
- Need a VN $\rightarrow$ name mapping to handle kills
- Must restore map with scope
- Adds complication, not cost

To simplify matters

- Unique name for each definition
- Makes name $\Leftrightarrow$ VN
- Use the SSA name space



## What About Larger Scopes?

We have not helped with F or $G$

- Multiple predecessors
- Not part of an EBB
- "Traces" do not capture safety conditions (value known on all paths)

- Must decide what facts hold in $F$ and in $G$
- For G, combine B \& F?
- Merging state is expensive
- Fall back on what's known


## What About Larger Scopes?

Two interesting approaches

- Change IR to represent context ${ }_{B}$ in an explicit way (SSA form)
- Perform global analysis to determine what facts hold on entry to F \& G
Approaches lead to different algorithms
- SSA form leads to fast, value-based technique using strong notions from control-flow analysis (DVNT, §8.5.2 in EaC)

- Global analysis leads to classic formulation of redunancy analysis as a problem in global data-flow analysis
- Syntactic equivalence rather than value equivalence

