
Local Instruction Scheduling
— A Primer for Lab 3 —

COMP 412
Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

1Comp 412 Fall 2005

What Makes Code Run Fast?

• Many operations have non-zero latencies
• Modern machines can issue several operations per cycle
• Execution time is order-dependent (and has been since the

60’s)
Assumed latencies (conservative)

Operation Cycles
load 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

• Loads & stores may or may not block
> Non-blocking ⇒fill those issue slots

• Branch costs vary with path taken
• Branches typically have delay slots

> Fill slots with unrelated operations
> Percolates branch upward

• Scheduler should hide the latencies

Lab 3 will build a local scheduler

2Comp 412 Fall 2005

Example

w ← w * 2 * x * y * z

1 loadAI r0,@w ! r1

4 add r1,r1 ! r1

5 loadAI r0,@x ! r2

8 mult r1,r2 ! r1

9 loadAI r0,@y ! r2

12 mult r1,r2 ! r1

13 loadAI r0,@z ! r2

16 mult r1,r2 ! r1

 18 storeAI r1 ! r0,@w

21 r1 is free

1 loadAI r0,@w ! r1

2 loadAI r0,@x ! r2

3 loadAI r0,@y ! r3

4 add r1,r1 ! r1

5 mult r1,r2 ! r1

6 loadAI r0,@z ! r2

7 mult r1,r3 ! r1

9 mult r1,r2 ! r1

11 storeAI r1 ! r0,@w

14 r1 is free

Simple schedule Schedule loads early

2 registers, 20 cycles 3 registers, 13 cycles

Reordering operations for speed is called instruction scheduling

3Comp 412 Fall 2005

Instruction Scheduling (Engineer’s View)

The Problem
Given a code fragment for some target machine and the
latencies for each individual operation, reorder the operations
to minimize execution time

The Concept

Scheduler
slow

code

fast

code

Machine description

The Task

• Produce correct code

• Minimize wasted cycles

• Avoid spilling registers

• Operate efficiently

4Comp 412 Fall 2005

Instruction Scheduling (The Abstract View)

To capture properties of the code, build a precedence graph G
• Nodes n ∈ G are operations with type(n) and delay(n)
• An edge e = (n1,n2) ∈ G if & only if n2 uses the result of n1

a: loadAI r0,@w ! r1

b: add r1,r1 ! r1

c: loadAI r0,@x ! r2

d: mult r1,r2 ! r1

e: loadAI r0,@y ! r2

f: mult r1,r2 ! r1

g: loadAI r0,@z ! r2

h: mult r1,r2 ! r1

i: storeAI r1 ! r0,@w

The Code

a

b c

d e

f g

h

i

The Precedence Graph

5Comp 412 Fall 2005

Instruction Scheduling (Definitions)

A correct schedule S maps each n∈ N into a non-negative integer
representing its cycle number, and

 1. S(n) ≥ 0, for all n ∈ N, obviously
2. If (n1,n2) ∈ E, S(n1) + delay(n1) ≤ S(n2)
3. For each type t, there are no more operations of type t in any cycle

than the target machine can issue

The length of a schedule S, denoted L(S), is
L(S) = maxn ∈ N (S(n) + delay(n))

The goal is to find the shortest possible correct schedule.
S is time-optimal if L(S) ≤ L(S1), for all other schedules S1

A schedule might also be optimal in terms of registers, power, or
space….

6Comp 412 Fall 2005

Instruction Scheduling (What’s so difficult?)

Critical Points
• All operands must be available
• Multiple operations can be ready
• Moving operations can lengthen register lifetimes
• Placing uses near definitions can shorten register lifetimes
• Operands can have multiple predecessors
Together, these issues make scheduling hard (NP-Complete)

Local scheduling is the simple case
• Restricted to straight-line code
• Consistent and predictable latencies

7Comp 412 Fall 2005

Instruction Scheduling: The Big Picture

1. Build a precedence graph, P
2. Compute a priority function over the nodes in P
3. Use list scheduling to construct a schedule, one cycle at a

time
a. Use a queue of operations that are ready
b. At each cycle

 I. Choose the highest priority ready operation and
schedule it

II. Update the ready queue

Local list scheduling

• The dominant algorithm for twenty years
• A greedy, heuristic, local technique

8Comp 412 Fall 2005

Local List Scheduling

Cycle ← 1
Ready ← leaves of P
Active ← Ø

while (Ready ∪ Active ≠ Ø)
 if (Ready ≠ Ø) then
 remove an op from Ready
 S(op) ← Cycle
 Active ← Active ∪ op

 Cycle ← Cycle + 1

 for each op ∈ Active
 if (S(op) + delay(op) ≤ Cycle) then
 remove op from Active
 for each successor s of op in P
 if (s is ready) then
 Ready ← Ready ∪ s

Removal in priority order

op has completed execution

If successor’s operands are
ready, put it on Ready

9Comp 412 Fall 2005

Scheduling Example

1. Build the precedence graph

a: loadAI r0,@w ! r1

b: add r1,r1 ! r1

c: loadAI r0,@x ! r2

d: mult r1,r2 ! r1

e: loadAI r0,@y ! r2

f: mult r1,r2 ! r1

g: loadAI r0,@z ! r2

h: mult r1,r2 ! r1

i: storeAI r1 ! r0,@w

The Code

a

b c

d e

f g

h

i

The Precedence Graph

10Comp 412 Fall 2005

Scheduling Example

1. Build the precedence graph
2. Determine priorities: longest latency-weighted path

a: loadAI r0,@w ! r1

b: add r1,r1 ! r1

c: loadAI r0,@x ! r2

d: mult r1,r2 ! r1

e: loadAI r0,@y ! r2

f: mult r1,r2 ! r1

g: loadAI r0,@z ! r2

h: mult r1,r2 ! r1

i: storeAI r1 ! r0,@w

The Code

a

b c

d e

f g

h

i

The Precedence Graph

3

5

8

7

9

10

12

10

13

11Comp 412 Fall 2005

Scheduling Example

1. Build the precedence graph
2. Determine priorities: longest latency-weighted path
3. Perform list scheduling

loadAI r0,@w ⇒ r11) a:

add r1,r1 ⇒ r14) b:

loadAI r0,@x ⇒ r22) c:

mult r1,r2 ⇒ r15) d:

loadAI r0,@y ⇒ r33) e:

mult r1,r3 ⇒ r17) f:
loadAI r0,@z ⇒ r26) g:

mult r1,r2 ⇒ r19) h:
11) i: storeAI r1 ⇒ r0,@w

The Code

a

b c

d e

f g

h

i

The Precedence Graph

3

5

8

7

9

10

12

10

13

New register name used

12Comp 412 Fall 2005

Detailed Scheduling Algorithm I

for each n ∈ N do begin count[n] := 0; earliest[n] = 0 end
for each (n1,n2) ∈ E do begin

count[n2] := count[n2] + 1;
successors[n1] := successors[n1] ∪ {n2};

end
for i := 0 to MaxC – 1 do W[i] := ∅;
Wcount := 0;
for each n ∈ N do

if count[n] = 0 then begin
W[0] := W[0] ∪ {n}; Wcount := Wcount + 1;

end
c := 0; // c is the cycle number
cW := 0;// cW is the number of the worklist for cycle c
instr[c] := ∅;

Idea: Keep a collection of worklists W[c], one per cycle
— We need MaxC = max delay + 1 such worklists

Code:

13Comp 412 Fall 2005

Detailed Scheduling Algorithm II

while Wcount > 0 do begin
while W[cW] = ∅ do begin

c := c + 1; instr[c] := ∅; cW := mod(cW+1,MaxC);
end
nextc := mod(c+1,MaxC);
while W[cW] ≠ ∅ do begin

select and remove an arbitrary instruction x from W[cW];
if ∃ free issue units of type(x) on cycle c then begin

instr[c] := instr[c] ∪ {x}; Wcount := Wcount - 1;
for each y ∈ successors[x] do begin

count[y] := count[y] – 1;
earliest[y] := max(earliest[y], c+delay(x));
if count[y] = 0 then begin

loc := mod(earliest[y],MaxC);
W[loc] := W[loc] ∪ {y}; Wcount := Wcount + 1;

end
end

else W[nextc] := W[nextc] ∪ {x};
end

end

Priority

14Comp 412 Fall 2005

More List Scheduling
List scheduling breaks down into two distinct classes

Variations on list scheduling

• Prioritize critical path(s)

• Schedule last use as soon as possible

• Depth first in precedence graph (minimize registers)

• Breadth first in precedence graph (minimize interlocks)

• Prefer operation with most successors

Forward list scheduling

• Start with available operations

• Work forward in time

• Ready ⇒ all operands available

Backward list scheduling

• Start with no successors

• Work backward in time

• Ready ⇒ latency covers uses

15Comp 412 Fall 2005

Lab 3

• Implement two schedulers for basic blocks in ILOC

• One must be list scheduling with specified priority

• Other can be a second priority, or a different algorithm

• Same ILOC subset as in lab 1 (plus NOP)

• Different execution model

— Two asymmetric functional units

— Latencies different from lab 1

— Simulator different from lab 1

16Comp 412 Fall 2005

Lab 3 — Specific questions
1. Are we in over our heads? No. The hard part of this lab should be

trying to get good code. The programming is not bad; you can
reuse some stuff from lab 1. You have all the specifications &
tools you need. Jump in and start programming.

2. How many registers can we use? Assume that you have as many
registers as you need. If the simulator runs out, we’ll get more.
Rename registers to avoid false dependences & conflicts.

3. What about a store followed by a load? If you can show that the
two operations must refer to different memory locations, the
scheduler can overlap their execution. Otherwise, the store must
complete before the load issues.

4. What about test files? We will put some test files online on
OwlNet. We will test your lab on files you do not see. We have
had problems (in the past) with people optimizing their labs for the
test data. (Not that you would do that!)

17Comp 412 Fall 2005

Lab 3 - Hints

• Begin by renaming registers to eliminate false dependencies
• Pay attention to loads and stores

— When can they be reordered?

• Understand the simulator
• Inserting NOPs may be necessary to get correct code
• Tiebreakers can make a difference

