Local Instruction Scheduling - A Primer for Lab 3 -

COMP 412
 Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy \& Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

What Makes Code Run Fast?

- Many operations have non-zero latencies
- Modern machines can issue several operations per cycle
- Execution time is order-dependent (and has been since the 60's)
Assumed latencies (conservative)

Operation	Cycles
load	3
store	3
loadl	1
add	1
mult	2
fadd	1
fmult	2
shift	1
branch	0 to 8

- Loads \& stores may or may not block
$\quad>$ Non-blocking \Rightarrow fill those issue slots
- Branch costs vary with path taken
- Branches typically have delay slots
$\quad>$ Fill slots with unrelated operations
$\quad>$ Percolates branch upward
- Scheduler should hide the latencies
Lab 3 will build a local scheduler

Example

$$
w \leftarrow w^{\star} 2^{\star} x^{*} y^{\star} z
$$

Simple schedule
1 loadAI r 0 @w $\Rightarrow \mathrm{r} 1$
4 add $\quad \mathrm{r} 1, \mathrm{r} 1 \quad \Rightarrow \mathrm{r} 1$
5 loadAl $\quad \mathrm{r}, @ \mathrm{x} \quad \Rightarrow \mathrm{r} 2$
8 mult r1,r2 $\Rightarrow r 1$
9 loadAl $\quad \mathrm{r}, @ y \quad \Rightarrow \mathrm{r} 2$
12 mult $\quad \mathrm{r} 1, \mathrm{r} 2 \quad \Rightarrow \mathrm{r} 1$
13 loadAl $\quad \mathrm{r} 0$ @z $\Rightarrow r 2$
16 mult $\quad \mathrm{r} 1, \mathrm{r} 2 \quad \Rightarrow \mathrm{r} 1$
18 storeAl r1 $\quad \Rightarrow$ r0,@w
21 r 1 is free
2 registers, 20 cycles

Schedule loads early

1 loadAI r0,@w $\Rightarrow r 1$
2 loadAI rO @ $\mathrm{x} \Rightarrow \mathrm{r}$
3 loadAl r 0 @y $\Rightarrow \mathrm{r} 3$
4 add $\quad \mathrm{r} 1, \mathrm{r} 1 \quad \Rightarrow \mathrm{r} 1$
5 mult $\quad \mathrm{r} 1, \mathrm{r} 2 \quad \Rightarrow \mathrm{r} 1$
6 loadAl $\quad \mathrm{rO}, \mathrm{Qz} \quad \Rightarrow \mathrm{r} 2$
7 mult $\quad \mathrm{r} 1, \mathrm{r} 3 \quad \Rightarrow \mathrm{r} 1$
9 mult $\quad \mathrm{r} 1, \mathrm{r} 2 \quad \Rightarrow \mathrm{r} 1$
11 storeAl r1 $\quad \Rightarrow$ r0,@w
14 r 1 is free
3 registers, 13 cycles

Reordering operations for speed is called instruction scheduling

Instruction Scheduling (Engineer's View)

The Problem
Given a code fragment for some target machine and the latencies for each individual operation, reorder the operations to minimize execution time

The Concept

The Task

- Produce correct code
- Minimize wasted cycles
- Avoid spilling registers
- Operate efficiently

Instruction Scheduling

(The Abstract View)

To capture properties of the code, build a precedence graph G

- Nodes $n \in G$ are operations with type(n) and delay(n)
- An edge $e=\left(n_{1}, n_{2}\right) \in G$ if $\&$ only if n_{2} uses the result of n_{1}

a:	loadAI	$r 0, @ w$	$\Rightarrow r 1$
b:	add	$r 1, r 1$	$\Rightarrow r 1$
c:	loadAI	$r 0, @ x$	$\Rightarrow r 2$
d:	mult	$r 1, r 2$	$\Rightarrow r 1$
e:	loadAI	$r 0, @ y$	$\Rightarrow r 2$
f:	mult	$r 1, r 2$	$\Rightarrow r 1$
g:	loadAI	$r 0, @ z$	$\Rightarrow r 2$
h:	mult	$r 1, r 2$	$\Rightarrow r 1$
i:	storeAI	$r 1$	$\Rightarrow r 0, @ w$

The Code

The Precedence Graph

Instruction Scheduling (Definitions)

A correct schedule S maps each $n \in N$ into a non-negative integer representing its cycle number, and

1. $S(n) \geq 0$, for all $n \in N$, obviously
2. If $\left(n_{1}, n_{2}\right) \in E, S\left(n_{1}\right)+\operatorname{delay}\left(n_{1}\right) \leq S\left(n_{2}\right)$
3. For each type t, there are no more operations of type t in any cycle than the target machine can issue

The length of a schedule S, denoted $L(S)$, is

$$
L(S)=\max _{n \in N}(S(n)+\operatorname{delay}(n))
$$

The goal is to find the shortest possible correct schedule.
S is time-optimal if $L(S) \leq L\left(S_{1}\right)$, for all other schedules S_{1}
A schedule might also be optimal in terms of registers, power, or space....

Instruction Scheduling (What's so difficult?)

Critical Points

- All operands must be available
- Multiple operations can be ready
- Moving operations can lengthen register lifetimes
- Placing uses near definitions can shorten register lifetimes
- Operands can have multiple predecessors

Together, these issues make scheduling hard (NP-Complete)

Local scheduling is the simple case

- Restricted to straight-line code
- Consistent and predictable latencies

Instruction Scheduling: The Big Picture

1. Build a precedence graph, P
2. Compute a priority function over the nodes in P
3. Use list scheduling to construct a schedule, one cycle at a time
a. Use a queue of operations that are ready
b. At each cycle
I. Choose the highest priority ready operation and schedule it
II. Update the ready queue

Local list scheduling

- The dominant algorithm for twenty years
- A greedy, heuristic, local technique

Local List Scheduling

Scheduling Example

1. Build the precedence graph

a:	loadAI	$r 0, @ w$	$\Rightarrow r 1$
b:	add	$r 1, r 1$	$\Rightarrow r 1$
c:	loadAl	$r 0, @ x$	$\Rightarrow r 2$
d:	mult	$r 1, r 2$	$\Rightarrow r 1$
e:	loadAl	$r 0, @ y$	$\Rightarrow r 2$
f:	mult	$r 1, r 2$	$\Rightarrow r 1$
g:	loadAl	$r 0, @ z$	$\Rightarrow r 2$
h:	mult	$r 1, r 2$	$\Rightarrow r 1$
i:	storeAI	$r 1$	$\Rightarrow r 0, @ w$

The Code

The Precedence Graph

Scheduling Example

1. Build the precedence graph
2. Determine priorities: longest latency-weighted path

a:	loadAI	$r 0, @ w$	$\Rightarrow r 1$
b:	add	$r 1, r 1$	$\Rightarrow r 1$
c:	loadAI	$r 0, @ x$	$\Rightarrow r 2$
d:	mult	$r 1, r 2$	$\Rightarrow r 1$
e:	loadAI	$r 0, @ y$	$\Rightarrow r 2$
f: mult	$r 1, r 2$	$\Rightarrow r 1$	
g: loadAI	$r 0, @ z$	$\Rightarrow r 2$	
h: mult	$r 1, r 2$	$\Rightarrow r 1$	
i:	storeAl	$r 1$	$\Rightarrow r 0, @ w$

The Code

The Precedence Graph

Scheduling Example

1. Build the precedence graph
2. Determine priorities: longest latency-weighted path
3. Perform list scheduling
1) a: loadAl
r0,@w $\quad \Rightarrow$ r1
2) c: loadAI
r 0 ,@x $\quad \Rightarrow \mathrm{r} 2$
3) e: loadAI
$r 0, @ y \quad \Rightarrow r 3$
4) b: add
$\mathrm{r} 1, \mathrm{r} 1 \quad \Rightarrow \mathrm{r} 1$
5) d: mult
$\mathrm{r} 1, \mathrm{r} 2 \quad \Rightarrow \mathrm{r} 1$
6) g : IoadAl
$\mathrm{r} 0, @ \mathrm{z} \quad \Rightarrow \mathrm{r} 2$
7) f: mult
$\mathrm{r} 1, \mathrm{r} 3 \quad \Rightarrow \mathrm{r} 1$
8) h: mult $\quad \mathrm{r} 1, \mathrm{r} 2 \Rightarrow \mathrm{r} 1$
9) i: storeAl r1 $\quad \Rightarrow r 0, @ w$

The Code

The Precedence Graph

Detailed Scheduling Algorithm I

Idea: Keep a collection of worklists W[c], one per cycle

- We need MaxC = max delay +1 such worklists

Code:

```
for each }n\inN\mathrm{ do begin count[n] := 0; earliest[n] = 0 end
for each (n1,n2) \inE do begin
    count[n2] := count[n2] + 1;
    successors[n1] := successors[n1] \cup {n2};
end
for i := 0 to MaxC - 1 do W[i] := \varnothing;
Wcount := 0;
for each n }\inN\mathrm{ do
    if count[n] = 0 then begin
        W[0] := W[0] \cup{n}; Wcount := Wcount + 1;
    end
c := 0; // c is the cycle number
cW := 0;// cW is the number of the worklist for cycle c
instr[c]:= \varnothing;
```


Detailed Scheduling Algorithm II

More List Scheduling

List scheduling breaks down into two distinct classes

Forward list scheduling

- Start with available operations
- Work forward in time
- Ready \Rightarrow all operands available

Backward list scheduling

- Start with no successors
- Work backward in time
- Ready \Rightarrow latency covers uses

Variations on list scheduling

- Prioritize critical path(s)
- Schedule last use as soon as possible
- Depth first in precedence graph (minimize registers)
- Breadth first in precedence graph (minimize interlocks)
- Prefer operation with most successors

Lab 3

- Implement two schedulers for basic blocks in ILOC
- One must be list scheduling with specified priority
- Other can be a second priority, or a different algorithm
- Same ILOC subset as in lab 1 (plus NOP)
- Different execution model
- Two asymmetric functional units
- Latencies different from lab 1
- Simulator different from lab 1

Lab 3 - Specific questions

1. Are we in over our heads? No. The hard part of this lab should be trying to get good code. The programming is not bad; you can reuse some stuff from lab 1. You have all the specifications \& tools you need. Jump in and start programming.
2. How many registers can we use? Assume that you have as many registers as you need. If the simulator runs out, we'll get more. Rename registers to avoid false dependences \& conflicts.
3. What about a store followed by a load? If you can show that the two operations must refer to different memory locations, the scheduler can overlap their execution. Otherwise, the store must complete before the load issues.
4. What about test files? We will put some test files online on OwlNet. We will test your lab on files you do not see. We have had problems (in the past) with people optimizing their labs for the test data. (Not that you would do that!)

Lab 3 - Hints

- Begin by renaming registers to eliminate false dependencies
- Pay attention to loads and stores
- When can they be reordered?
- Understand the simulator
- Inserting NOPs may be necessary to get correct code
- Tiebreakers can make a difference

