Instruction Selection, II Tree-pattern matching

COMP 412
 Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy \& Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

The Concept

Many compilers use tree-structured IRs

- Abstract syntax trees generated in the parser
- Trees or DAGs for expressions

These systems might well use trees to represent target ISA
Consider the ILOC add operations

If we can match these "pattern trees" against IR trees, ...

The Concept

Low-level AST for $w \leftarrow x-2$ * y

The Concept

Low-level AST for $w \leftarrow x-2$ * y

Notation

To describe these trees, we need a concise notation

Notation

To describe these trees, we need a concise notation

$$
+\left(r_{i}, c_{j}\right)
$$

$$
+\left(c_{j}, r_{i}\right)
$$

$$
+\left(r_{i}, r_{j}\right)
$$

> Pattern for commutative variant of $+\left(r_{i}, c_{j}\right)$

With each tree pattern, we associate a code template and a cost

- Template shows how to implement the subtree
- Cost is used to drive process to low-cost code sequences

Notation

The same notation can describe our low-level AST

Tree-pattern matching

Goal is to "tile" AST with operation trees

- A tiling is collection of <ast,op> pairs
- ast is a node in the AST
- op is a pattern tree
- <ast, op > means that op could implement the subtree at ast
- A tiling 'implements" an AST if it covers every node in the AST and the overlap between any two trees is limited to a single node
- <ast, op> \in tiling means that the root of ast is also covered by a leaf in another pattern tree in the tiling, unless it is the root
- Where two pattern trees overlap, they must be compatible (expect the value in the same location)

A Tiling for our Example Tree

Each tile corresponds to a sequence of operations

Emitting those operations in an appropriate order implements the tree.'

Generating Code from the Tiled Tree

- Postorder treewalk, with node-dependent visitation order
- Right child of GETS before its left child
- Might impose "most demanding subtree first" rule ...
- Emit code sequence for tiles, in traversal order
- Tie boundaries together with names
- Tile 6 uses registers produced by tiles 1 \& 5
- Tile 6 emits "store $r_{\text {tile } 5} \Rightarrow r_{\text {tile 1 }}{ }^{\prime \prime}$
- Can incorporate a "real" allocator or can use "NextRegister++"

```
                                    GETS
```


So, What's Hard About This?

Finding the matches to tile the tree

- Compiler writer connects operation trees to AST subtrees
- Provides a set of rewrite rules
- Encode tree syntax, in linear form
- Associate a code template with each rule
- Give the cost of each template

Rewrite rules: LL Integer AST into ILOC

	Rule	Cost	Template
1	Goal \rightarrow Assign	0	
2	Assign \rightarrow GETS($\mathrm{Reg}_{1}, \mathrm{Reg}_{2}$)	1	store $\quad r_{2} \Rightarrow r_{1}$
3	Assign \rightarrow GETS(+($\left.\left.\mathrm{Reg}_{1}, \mathrm{Reg}_{2}\right), \mathrm{Reg}_{3}\right)$	1	storeAO $r_{3} \Rightarrow r_{1}, r_{2}$
4	Assign \rightarrow GETS(+($\left.\left.\mathrm{Reg}_{1}, \mathrm{NUM}_{2}\right), \mathrm{Reg}_{3}\right)$	1	storeAI $r_{3} \Rightarrow r_{1}, n_{2}$
5	Assign \rightarrow GETS(+($\left.\mathrm{NUM}_{1}, \mathrm{Reg}_{2}\right), \mathrm{Reg}_{3}$)	1	storeAI $\quad r_{3} \Rightarrow r_{2}, n_{1}$
6	$\mathrm{Reg} \rightarrow \mathrm{LAB}_{1}$	1	loadI $\quad l_{1} \Rightarrow r_{\text {new }}$
7	$\mathrm{Reg} \rightarrow \mathrm{VAL}_{1}$	0	
8	$\mathrm{Reg} \rightarrow \mathrm{NUM}_{1}$	1	loadI $\quad \mathrm{n}_{1} \Rightarrow \mathrm{r}_{\text {new }}$
9	Reg \rightarrow REF $\left(\mathrm{Reg}_{1}\right)$	1	load $\quad r_{1} \Rightarrow r_{\text {new }}$
10	$\operatorname{Reg} \rightarrow \operatorname{REF}\left(+\left(\operatorname{Reg}_{1}, \mathrm{Reg}_{2}\right)\right)$	1	loadAO $r_{1}, r_{2} \Rightarrow r_{\text {new }}$
11	$\mathrm{Reg} \rightarrow \mathrm{REF}\left(+\left(\mathrm{Reg}_{1}, \mathrm{NUM}_{2}\right)\right)$	1	loadAI $\mathrm{r}_{1}, \mathrm{n}_{2} \Rightarrow \mathrm{r}_{\text {new }}$
12	$\mathrm{Reg} \rightarrow \mathrm{REF}\left(+\left(\mathrm{NUM}_{1}, \mathrm{Reg}_{2}\right)\right)$	1	loadAI $\mathrm{r}_{2}, \mathrm{n}_{1} \Rightarrow \mathrm{r}_{\text {new }}$

From Figure 11.5 in EaC 12

Rewrite rules: LL Integer AST into ILOC (part II)

		Rule	Cost	Templa	
	13	Reg $\rightarrow+\left(\operatorname{Reg}_{1}, \mathrm{Reg}_{2}\right)$	1	add	$\mathrm{r}_{1}, \mathrm{r}_{2} \Rightarrow \mathrm{r}_{\text {new }}$
	14	Reg $\rightarrow+\left(\operatorname{Reg}_{1}, \mathrm{NUM}_{2}\right)$	1	addI	$\mathrm{r}_{1}, \mathrm{n}_{2} \Rightarrow \mathrm{r}_{\text {new }}$
	15	Reg $\rightarrow+\left(\mathrm{NUM}_{1}, \mathrm{Reg}_{2}\right)$	1	addI	$\mathrm{r}_{2}, \mathrm{n}_{1} \Rightarrow \mathrm{r}_{\text {new }}$
	16	Reg \rightarrow - $\left(\operatorname{Reg}_{1}, \operatorname{Reg}_{2}\right)$	1	sub	$\mathrm{r}_{1}, \mathrm{r}_{2} \Rightarrow \mathrm{r}_{\text {new }}$
	17	Reg \rightarrow - $\left(\mathrm{Reg}_{1}, \mathrm{NUM}_{2}\right)$	1	subI	$\mathrm{r}_{1}, \mathrm{n}_{2} \Rightarrow \mathrm{r}_{\text {new }}$
	18	Reg \rightarrow - $\left(\mathrm{NUM}_{1}, \mathrm{Reg}_{2}\right)$	1	rsubI	$\mathrm{r}_{2}, \mathrm{n}_{1} \Rightarrow \mathrm{r}_{\text {new }}$
	19	Reg $\rightarrow \times\left(\operatorname{Reg}_{1}, \mathrm{Reg}_{2}\right)$	1	mult	$\mathrm{r}_{1}, \mathrm{r}_{2} \Rightarrow \mathrm{r}_{\text {new }}$
	20	$\mathrm{Reg} \rightarrow \times\left(\operatorname{Reg}_{1}, \mathrm{NUM}_{2}\right)$	1	mult 1	$\mathrm{r}_{1}, \mathrm{n}_{2} \Rightarrow \mathrm{r}_{\text {new }}$
	21	$\operatorname{Reg} \rightarrow \times\left(\mathrm{NUM}_{1}, \operatorname{Reg}_{2}\right)$	1	multI	$\mathrm{r}_{2}, \mathrm{n}_{1} \Rightarrow \mathrm{r}_{\text {new }}$

A real set of rules would cover more than signed integers ...

So, What's Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

So, What's Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example
What rules match tile 3?

So, What's Hard About This?

Need an algorithm to match AST subtrees with the rules

Consider tile 3 in our example
What rules match tile 3?

6: Reg $\rightarrow L A B_{1}$ tiles the lower left node

So, What's Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example
What rules match tile 3?

6: Reg $\rightarrow L A B_{1}$ tiles the lower left node
8: Reg \rightarrow NUM $_{1}$ tiles the bottom right node

So, What's Hard About This?

Need an algorithm to AST subtrees with the rules
Consider tile 3 in our example
What rules match tile 3?

6: Reg $\rightarrow L A B_{1}$ tiles the lower left node
8: Reg \rightarrow NUM ${ }_{1}$ tiles the bottom right node
13: Reg $\rightarrow+\left(\right.$ Reg $_{1}$, Reg $\left._{2}\right)$ tiles the + node

So, What's Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

What rules match tile 3?
6: Reg $\rightarrow L A B_{1}$ tiles the lower left node
8: Reg \rightarrow NUM ${ }_{1}$ tiles the bottom right node
13: Reg $\rightarrow+\left(\right.$ Reg $_{1}$, Reg $\left._{2}\right)$ tiles the + node
9: $\operatorname{Reg} \rightarrow \operatorname{REF}\left(\right.$ Reg $\left._{1}\right)$ tiles the REF

So, What's Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

What rules match tile 3?

$$
\begin{aligned}
& \text { 6: Reg } \rightarrow \text { LAB } B_{1} \text { tiles the lower left node } \\
& \text { 8: Reg } \rightarrow \text { NUM }{ }_{1} \text { tiles the bottom right node } \\
& \text { 13: Reg } \rightarrow+\left(\operatorname{Reg}_{1}, \text { Reg }_{2}\right) \text { tiles the }+ \text { node } \\
& \text { 9: } \operatorname{Reg} \rightarrow \operatorname{REF}\left(\text { Reg }_{1}\right) \text { tiles the REF }
\end{aligned}
$$

We denote this match as $\langle 6,8,13,9>$
Of course, it implies <8,6,13,9>
Both have a cost of 4

Finding matches

Many Sequences Match Our Subtree

	Cost	Sequences				
 REF \downarrow \downarrow	6	6,11	8,12			
3	$6,8,10$	$8,6,10$	$6,14,9$	$8,15,9$		
4	$6,8,13,9$	$8,6,13,9$				

In general, we want the low cost sequence

- We have assumed uniform unit costs
- We favor shorter (lower-cost) sequences
- Accurate costs produce better code

Finding matches

Low Cost Matches

Sequences with Cost of 2	
$\begin{aligned} & \text { 6: } \mathrm{Reg} \rightarrow \mathrm{LAB}_{1} \\ & \text { 11: Reg } \rightarrow \operatorname{REF}\left(+\left(\operatorname{Reg}_{1}, \mathrm{NUM}_{2}\right)\right) \end{aligned}$	$\begin{array}{lll} \text { loadI } & @ G & \Rightarrow r_{i} \\ \text { loadAI } r_{i}, 12 & \Rightarrow r_{j} \end{array}$
$\begin{aligned} & \text { 8: } \operatorname{Reg} \rightarrow \mathrm{NUM}_{1} \\ & \text { 12: } \operatorname{Reg} \rightarrow \operatorname{REF}\left(+\left(\mathrm{NUM}_{1}, \operatorname{Reg}_{2}\right)\right) \end{aligned}$	$\begin{array}{ll} \text { loadI } 12 & \Rightarrow r_{i} \\ \text { loadAI } r_{i}, @ G & \Rightarrow r_{j} \end{array}$

These two sequences are equivalent in cost
6,11 might be better, because @G may be longer than the immediate field

Can encode length restriction on immediate fields into the classification of terminals, at the cost of a little more ambiguity

Tiling the Tree

Still need an algorithm

- Assume each rule implements one operator
- This is a big assumption because it eliminates rules like 11

$$
\operatorname{Reg} \rightarrow \operatorname{REF}\left(+\left(\operatorname{Reg}_{1}, \mathrm{NUM}_{2}\right)\right) \quad(\text { corresponds to loadAI) }
$$

- A solution: break into two rules

$$
\begin{array}{ll}
\text { Reg } \rightarrow \text { REF(DUM) } & \text { cost: } 1 \\
\text { DUM } \rightarrow+\left(\operatorname{Reg}_{1}, \mathrm{NUM}_{2}\right) & \text { cost: } 0
\end{array}
$$

- Assume operator takes 0,1 , or 2 operands

Now, ...

Tiling the Tree

Tile(n)

Label(n) $\leftarrow \varnothing$
if n has two children then
Tile (left child of n)
Tile (right child of n)
for each rule r that implements n if $(l e f t(r) \in$ Label(left $(n))$ and (right $(r) \in$ Label $(\operatorname{right}(n))$ then Label $(n) \leftarrow$ Label $(n) \cup\{r\}$
else if n has one child
Tile(left child of n)
for each rule r that implements n
if (left(r) \in Label(child(n)) then Label $(n) \leftarrow$ Label $(n) \cup\{r\}$
else /* n is a leaf */ Label $(n) \leftarrow\{$ all rules that implement $n\}\}$ lookup in rule table

Tiling the Tree

Tile(n)
Label(n) $\leftarrow \varnothing$
if n has two children then
Tile (left child of n)
Tile (right child of n)
for each rule r that implements n if (left $(r) \in$ Label(left (n)) and $($ right $(r) \in$ Label (right $(n))$ then Label $(n) \leftarrow$ Label $(n) \cup\{r\}$
else if n has one child
Tile(left child of n)
Use same notation to navigate through the rules (pattern trees) and the AST - left and right have obvious meanings on AST

- left and right have similar meanings on the rhs of a rule - interpreted as if on the underlying pattern tree
for each rule r that implements n
if (left(r) Label(child(n))
then Label $(n) \leftarrow$ Label $(n) \cup\{r\}$
else /* n is a leaf */
Label $(n) \leftarrow\{$ all rules that implement $n\}$

Tiling the Tree

Tile(n)
Label(n) $\leftarrow \varnothing$
if n has two children then
Tile (left child of n)
Tile (right child of n)
for each rule r that implements n if (left $(r) \in$ Label(left $(n))$ and (right $(r) \in$ Label $(\operatorname{right}(n))$ then Label $(n) \leftarrow$ Label $(n) \cup\{r\}$
else if n has one child
Tile(left child of n)
for each rule r that implements n if (left(r) Label(child(n)) then Label $(n) \leftarrow$ Label $(n) \cup\{r\}$

This algorithm

- Finds all matches in rule set
- Labels node n with that set
- Can keep lowest cost match at each point
- Leads to a notion of local optimality - lowest cost at each point
- Spends its time in the two matching loops
else /* n is a leaf */
Label $(n) \leftarrow\{$ all rules that implement $n\}$

Tiling the Tree

Tile(n)

Label(n) $\leftarrow \varnothing$
if n has two children then
Tile (left child of n)
Tile (right child of n)
for each rule r that implements n if (left $(r) \in$ Label(left $(n))$ and (right $(r) \in$ Label $(\operatorname{right}(n))$ then Label $(n) \leftarrow$ Label $(n) \cup\{r\}$
else if n has one child
Tile(left child of n)
for each rule r that implements n if (left(r) \in Label(child(n)) then Label(n) \leftarrow Label $(n) \cup\{r\}$

Oversimplifications

1. Only handles 1 storage class
2. Must track low cost sequence in each class
3. Must choose lowest cost for subtree, across all classes

The extensions to handle these complications are pretty straightforward.
else /* n is a leaf */
Label $(n) \leftarrow\{$ all rules that implement $n\}$

Tiling the Tree

```
Tile(n)
    Label(n)}\leftarrow
    if n has two children then
        Tile (left child of n)
        Tile (right child of n)
        for each rule r that implements n
            if (left(r) \inLabel(left(n)) and
                (right(r) GLabel(right(n))
                then Label(n)\leftarrowLabel(n)\cup{r}
    else if n has one child
        Tile(left child of n)
        for each rule r that implements n
            if (left(r) GLabel(child(n))
                then Label(n)}\leftarrowLabel(n)\cup{r
else /* n is a leaf */
    Label(n)\leftarrow{all rules that implement n}
```

Can turn matching code (inner loop) into a table lookup

Table can get huge and sparse |op trees $|\times|$ labels $\mid \times$ |labels \mid $200 \times 1000 \times 1000$ leads to 200,000,000 entries

Fortunately, they are quite sparse \& have reasonable encodings (e.g., Chase's work)

The Big Picture

- Tree patterns represent AST and ASM
- Can use matching algorithms to find low-cost tiling of AST
- Can turn a tiling into code using templates for matched rules
- Techniques (\& tools) exist to do this efficiently

Hand-coded matcher like Tile	Avoids large sparse table Lots of work
Encode matching as an automaton	O(1) cost per node Tools like BURS, BURG
Use parsing techniques	Uses known technology Very ambiguous grammars
Linearize tree into string and use Aho-Corasick	Finds all matches

Extra Slides Start Here

Other Sequences for Tile 3

Other Sequences for Tile 3

8,12
Two operator rule
8: Reg \rightarrow NUM $_{1}$
12: $\operatorname{Reg} \rightarrow \operatorname{REF}\left(+\left(\mathrm{NUM}_{1}, \operatorname{Reg}_{2}\right)\right)$

Other Sequences for Tile 3

Other Sequences for Tile 3

6,14,9
All single operator rules
6: $\operatorname{Reg} \rightarrow L A B_{1}$
14: $\operatorname{Reg} \rightarrow+\left(\operatorname{Reg}_{1}, \mathrm{NUM}_{2}\right)$
9: $\operatorname{Reg} \rightarrow \operatorname{REF}\left(\operatorname{Reg}_{1}\right)$

Other Sequences for Tile 3

8,15,9
All single operator rules
8: $\operatorname{Reg} \rightarrow$ NUM $_{1}$
15: $\operatorname{Reg} \rightarrow+\left(\mathrm{NUM}_{1}, \operatorname{Reg}_{2}\right)$
9: $\operatorname{Reg} \rightarrow \operatorname{REF}\left(\operatorname{Reg}_{1}\right)$

Other Sequences for Tile 3

$$
8,6,13,9 \text { looks the same }
$$

