
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

Code Shape IV
Procedure Calls & Dispatch

COMP 412
Fall 2005

COMP 412, Fall 2002 2Comp 412 Fall 2005

Procedure Linkages

Standard procedure linkage

procedure p
prolog

epilog

pre-call

post-return

procedure q

prolog

epilog

Procedure has
• standard prolog
• standard epilog

Each call involves a
• pre-call sequence
• post-return sequence
These are completely
predictable from the
call site ⇒ depend on
the number & type of
the actual parameters

COMP 412, Fall 2002 3Comp 412 Fall 2005

Activation Record Basics

parameters

register
save area

return value

return address

addressability

caller’s ARP

local
variables

ARP

Space for parameters to
the current routine

Saved register contents

If function, space for
return value

Address to resume caller

Help with non-local access

To restore caller’s AR on a
return

Space for local values &
variables (including spills)

One AR for each invocation of a procedure

COMP 412, Fall 2002 4Comp 412 Fall 2005

Implementing Procedure Calls

If p calls q …
• In the code for p, compiler emits pre-call sequence

— Evaluates each parameter & stores it appropriately
— Loads the return address from a label
— (with access links) sets up q ‘s access link
— Branches to the entry of q

• In the code for p, compiler emits post-return sequence
— Copy return value into appropriate location
— Free q ‘s AR, if needed
— Resume p ‘s execution

Invariant parts of pre-call sequence might be moved into the prolog

COMP 412, Fall 2002 5Comp 412 Fall 2005

Implementing Procedure Calls
If p calls q …
• In the prolog, q must

— Set up its execution environment
— (with display) update the display entry for its lexical level
— Allocate space for its (AR &) local variables & initialize them
— If q calls other procedures, save the return address
— Establish addressability for static data area(s)

• In the epilog, q must
— Store return value (unless “return” statement already did so)
— (with display) restore the display entry for its lexical level
— Restore the return address (if saved)
— Begin restoring p ’s environment
— Load return address and branch to it

COMP 412, Fall 2002 6Comp 412 Fall 2005

Implementing Procedure Calls

If p calls q, one of them must
• Preserve register values (caller-saves versus callee saves)

— Caller-saves registers stored/restored by p in p ‘s AR
— Callee-saves registers stored/restored by q in q ‘s AR

• Allocate the AR
— Heap allocation ⇒ callee allocates its own AR
— Stack allocation ⇒ caller & callee cooperate to allocate AR

Space tradeoff
• Pre-call & post-return occur on every call
• Prolog & epilog occur once per procedure
• More calls than procedures

— Moving operations into prolog/epilog saves space

COMP 412, Fall 2002 7Comp 412 Fall 2005

Implementing Procedure Calls

If p calls q, one of them must
• Preserve register values (caller-saves versus callee saves)

If space is an issue
• Moving code to prolog & epilog saves space
• As register sets grow, save/restore code does, too

— Each saved register costs 2 operations
— Can use a library routine to save/restore

– Pass it a mask to determine actions & pointer to space
– Hardware support for save/restore or storeM/loadM

Can decouple who saves from what is saved

32, 64,
128, 256

COMP 412, Fall 2002 8Comp 412 Fall 2005

Implementing Procedure Calls

If p calls q, one of them must
• Preserve register values (caller-saves versus callee saves)

If code space is an issue
• All saves in prolog, all restores in epilog

— Caller provides a bit mask for caller-saves registers
— Callee provides a bit mask for callee-saves registers
— Store all of them in same AR (either caller or callee)
— Efficient use of time and code space
— May waste some register save space in the AR

• Caller-save & callee-save assign responsibility not work

COMP 412, Fall 2002 9Comp 412 Fall 2005

Implementing Procedure Calls

Evaluating parameters
• Call by reference ⇒ evaluate parameter to an lvalue
• Call by value ⇒ evaluate parameter to an rvalue & store it

Aggregates, arrays, & strings are usually c-b-r
• Language definition issues
• Alternative is copying them at each procedure call ($$)

— Small structures can be passed in registers (in & out)
— Can pass large c-b-v objects c-b-r and copy on modification

AIX does this for C

COMP 412, Fall 2002 10Comp 412 Fall 2005

Implementing Procedure Calls

Evaluating parameters
• Call by reference ⇒ evaluate parameter to an lvalue
• Call by value ⇒ evaluate parameter to an rvalue & store it

Procedure-valued parameters
• Must pass starting address of procedure
• With access links, need the lexical level as well

— Procedure value is a static coordinate < level,address >
– May also need shared data areas (file-level scopes)
– In-file & out-of-file calls have (slightly) different costs

— This lets the caller set up the appropriate access link

COMP 412, Fall 2002 11Comp 412 Fall 2005

Implementing Procedure Calls
What about arrays as actual parameters?

Whole arrays, as call-by-reference parameters
• Callee needs dimension information ⇒ build a dope vector
• Store the values in the calling sequence
• Pass the address of the dope vector in the parameter slot
• Generate complete address polynomial at each reference

Some improvement is possible
• Save leni and lowi rather than lowi and highi

• Pre-compute the fixed terms in prologue sequence

What about call-by-value?
• Most c-b-v languages pass arrays by reference
• This is a language design issue

@A

low1

high1

low2

high2

COMP 412, Fall 2002 12Comp 412 Fall 2005

Implementing Procedure Calls
What about A[12] as an actual parameter?

If corresponding parameter is a scalar, it’s easy
• Pass the address or value, as needed
• Must know about both formal & actual parameter
• Language definition must force this interpretation

What is corresponding parameter is an array?
• Must know about both formal & actual parameter
• Meaning must be well-defined and understood
• Cross-procedural checking of conformability

⇒Again, we’re treading on language design issues

Fortran 77
lets amazing
things happen
in this case…

COMP 412, Fall 2002 13Comp 412 Fall 2005

An Aside That Doesn’t Fit Well Anywhere …
What about code for access to variable-sized arrays?

Local arrays dimensioned by actual parameters
• Same set of problems as parameter arrays
• Requires dope vectors (or equivalent)

— Place dope vector at fixed offset in activation record
⇒ Different access costs for textually similar references

This presents lots of opportunities for a good optimizer
• Common subexpressions in the address polynomial
• Contents of dope vector are fixed during each activation
• Should be able to recover much of the lost ground

⇒ Handle them like parameter arrays

COMP 412, Fall 2002 14Comp 412 Fall 2005

Variable-length Data

Arrays
→ If size is fixed at compile time, store in

fixed-length data area
→ If size is variable, store descriptor in

fixed length area, with pointer to variable
length area

→ Variable-length data area is assigned at
the end of the fixed length area for
block in which it is allocated

B0: {
 int a, b
 … assign value to a

B1: {
 int v(a), b, x

B2: {
 int x, y(8)

….
 }

a b v b x x y(8) v(a)

Variable-length dataIncludes fixed length data for
all blocks in the procedure …

COMP 412, Fall 2002 15Comp 412 Fall 2005

Implementing Procedure Calls

What about a string-valued argument?
• Call by reference ⇒ pass a pointer to the start of the string

— Works with either length/contents or null-terminated string

• Call by value ⇒ copy the string & pass it
— Can store it in caller’s AR or callee’s AR
— Callee’s AR works well with stack-allocated ARs
— Can pass by reference & have callee copy it if necessary …

Pointer functions as a “descriptor” for the string, stored in the
appropriate location (register or slot in the AR)

COMP 412, Fall 2002 16Comp 412 Fall 2005

Implementing Procedure Calls

What about a structure-valued parameter?
• Again, pass a descriptor
• Call by reference ⇒ descriptor (pointer) refers to original
• Call by value ⇒ create copy & pass its descriptor

— Can allocate it in either caller’s AR or callee’s AR
— Callee’s AR works well with stack-allocated ARs
— Can pass by reference & have callee copy it if necessary …

If it is actually an array of structures, then use a dope vector
If it is an element of an array of structures, then …

COMP 412, Fall 2002 17Comp 412 Fall 2005

What About Calls in an OOL (Dispatch)?
In an OOL, most calls are indirect calls
• Compiled code does not contain address of callee

— Finds it by indirection through class’ method table
— Required to make subclass calls find right methods
— Code compiled in class C cannot know of subclass methods that

override methods in C and C ‘s superclasses
• In the general case, need dynamic dispatch

— Map method name to a search key
— Perform a run-time search through hierarchy

– Start with object’s class, search for 1st occurrence of key
– This can be expensive

— Use a method cache to speed search
– Cache holds < key,class,method pointer >

How big?
Bigger ⇒ more hits &

longer search
Smaller ⇒ fewer hits,

faster search

COMP 412, Fall 2002 18Comp 412 Fall 2005

What About Calls in an OOL (Dispatch)?

Improvements are possible in special cases
• If class has no subclasses, can generate direct call

— Class structure must be static or class must be FINAL

• If class structure is static (language design issue)
— Can generate complete method table for each class
— Single indirection through class pointer (1 or 2 operations)
— Keeps overhead at a low level

• If class structure changes infrequently (behavioral issue)
— Build complete method tables at run time
— Initialization & any time class structure changes

• If running program can create new classes, … (design, again)
— Well, not all things can be done quickly

COMP 412, Fall 2002 19Comp 412 Fall 2005

Single Inheritance and Dynamic Dispatch

• Use prefixing of tables

Class Point {
int x, y;
public void draw();
public void d2o();

}

Class ColorPoint extends Point {
Color c;
public void draw();
public void rev();

}

x

y

table draw

d2o

draw

d2o

table

rev

Point: draw

ColorPoint:draw

ColorPoint:
rev

Point: d20

self

x

y

c

self

COMP 412, Fall 2002 20Comp 412 Fall 2005

What About Calls in an OOL (Dispatch)?

Unusual issues in OOL call
• Need to pass receiver’s object record as (1st) parameter

— Becomes self or this

• Typical OOL has lexical scoping in method
— Limited to block-style scoping ⇒ no need for access links
— Can overlay successive block scopes in same method (reuse)

• Method needs access to its class
— Object record has static pointer to class, to superclass, and …
— Class pointers don’t need updating like access-links

• Method is a full-fledged procedure
— It still needs an AR …
— Can often stack allocate them (HotSpot does …)

COMP 412, Fall 2002 21Comp 412 Fall 2005

What About setjmp() and longjmp() ?
Unix system calls to implement abnormal returns
• Setjmp() stores a descriptor, d, for use with longjmp()
• Invoking longjump(d) causes execution to continue at the

point after the setjump() call that created d

How can we implement setjmp() & longjmp() ?
• Setjmp() must store ARP and return address in descriptor

— What about values of registers and variables?
— If they are to be preserved, must compute a closure

– Stack-allocated ARs ⇒ copy the stack
– Heap-allocated ARs ⇒ keep a pointer & don’t free the AR

• Longjmp() must restore environment at setjmp()
— Restore ARP & discard ARs created since setjmp()

– Cheap with stack-allocated ARs, might cost more with heap

COMP 412, Fall 2002 22Comp 412 Fall 2005

Representing and Manipulating Strings

Character strings differ from scalars, arrays, & structures
• Fundamental unit is a character

— Typical sizes are one or two bytes
— Target ISA may (or may not) support character-size operations

• Set of supported operations on strings is limited
— Assignment, length, concatenation, translation (?)

• Efficient string operations are complex on most RISC ISAs
— Ties into representation, linkage convention, & source language

§ 7.6 in EaC

COMP 412, Fall 2002 23Comp 412 Fall 2005

Representing and Manipulating Strings

Two common representations
• Explicit length field

• Null termination

• Language design issue
— Fixed-length versus varying-length strings (1 or 2 length fields)

a s t r i n g \0b

@b

@b

a s t r i n gb8 Length field may
take more space
than terminator

COMP 412, Fall 2002 24Comp 412 Fall 2005

Representing and Manipulating Strings

Each representation as advantages and disadvantages

Unfortunately, null termination is almost considered normal
• Hangover from design of C
• Embedded in OS and API designs

Length + copy dataMust copy dataConcatenation

O(n)O(1)Length

Must count lengthChecking is easyChecked Assignment

StraightforwardStraightforwardAssignment

Null TerminationExplicit LengthOperation

COMP 412, Fall 2002 25Comp 412 Fall 2005

Manipulating Strings

Single character assignment

• With character operations
— Compute address of rhs, load character
— Compute address of lhs, store character

• With only word operations (>1 char per word)
— Compute address of word containing rhs & load it
— Move character to destination position within word
— Compute address of word containing lhs & load it
— Mask out current character & mask in new character
— Store lhs word back into place

COMP 412, Fall 2002 26Comp 412 Fall 2005

Manipulating Strings

Multiple character assignment
Two strategies

1. Wrap a loop around the single character code, or
2. Work up to a word-aligned case, repeat whole word moves, and

handle any partial-word end case

• With character operations
1. Easy to generate; inefficient use of resources
2. Harder to generate; better use of resources

• With only word operations
1. Lots of complication to generate; inefficient at runtime, too
2. Fold complications into end case; reasonable efficiency

Requires explicit
code to check for
buffer overflow
(⇒ length)

Source & destination aligned differently
⇒ much harder cases for word operations

COMP 412, Fall 2002 27Comp 412 Fall 2005

Manipulating Strings

Concatenation
• String concatenation is a length computation followed by a

pair of whole-string assignments
— Touches every character

• Exposes representation issues
— Is string a descriptor that points to text?
— Is string a buffer that holds the text?
— Consider a ← b || c

– Compute b || c and assign descriptor to a?
– Compute b || c into a temporary & copy it into a?
– Compute b || c directly into a?

• What about call fee(b || c) ?

COMP 412, Fall 2002 28Comp 412 Fall 2005

Manipulating Strings

Length Computation

• Representation determines cost
— Explicit length turns length(b) into a memory reference
— Null termination turns length(b) into a loop of memory

references and arithmetic operations

• Length computation arises in other contexts
— Whole-string or substring assignment
— Checked assignment (buffer overflow)
— Concatenation
— Evaluating call-by-value actual parameter or concatenation as

an actual parameter

