
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

Code Shape IV
Booleans, Relationals, & Control flow

COMP 412
Fall 2005



COMP 412,  Fall 2003 2Comp 412 Fall 2005

Boolean & Relational Values

How should the compiler represent them?
• Answer depends on the target machine

Two classic approaches
• Numerical representation
• Positional (implicit) representation
Correct choice depends on both context and ISA



COMP 412,  Fall 2003 3Comp 412 Fall 2005

Boolean & Relational Values

Numerical representation
• Assign values to TRUE and FALSE
• Use hardware AND, OR, and NOT operations
• Use comparison to get a boolean from a relational expression

Examples

x < y becomes cmp_LT   rx,ry !r1

if  (x < y)
   then stmt1 becomes
   else stmt2

cmp_LT   rx,ry !r1

cbr           r1"_stmt1,_stmt2



COMP 412,  Fall 2003 4Comp 412 Fall 2005

Boolean & Relational Values

What if the ISA uses a condition code?
• Must use a conditional branch to interpret result of compare
• Necessitates branches in the evaluation

Example:

This “positional representation” is much more complex

cmp      rx, ry!cc1

cbr_LT  cc1"LT,LF

x < y becomes LT: loadI    1 ! r2

br          "LE

LF: loadI    0 !  r2

LE: …other stmts…



COMP 412,  Fall 2003 5Comp 412 Fall 2005

Boolean & Relational Values

What if the ISA uses a condition code?
• Must use a conditional branch to interpret result of compare
• Necessitates branches in the evaluation

Example:

This “positional representation” is much more complex

cmp      rx, ry!cc1

cbr_LT  cc1"LT,LF

x < y becomes LT: loadI    1 ! r2

br          "LE

LF: loadI    0 !  r2

LE: …other stmts…

Condition codes
•  are an architect’s hack
•  allow ISA to avoid some
   comparisons
•  complicates code for
   simple cases

Editorial comment: (KDC)
This is an evil, seductive idea



COMP 412,  Fall 2003 6Comp 412 Fall 2005

Boolean & Relational Values
The last example actually encodes result in the PC
If result is used to control an operation, this may be enough

Condition code version does not directly produce (x < y)
Boolean version does
Still, there is no significant difference in the code produced

VARIATIONS ON THE ILOC BRANCH STRUCTURE

Straight Condition Codes Boolean Compares

comp rx,ry!cc1 cmp_LT rx,ry!r1

cbr_LT cc1  "L1,L2 cbr r1        "L1,L2

L1: add rc,rd!ra L1: add rc,rd!ra

br            "LOUT br            "LOUT

L2: add re,rf !ra L2: add re,rf !ra

br           "LOUT br            "LOUT

LOUT: nop LOUT: nop

if (x < y)
    then a ← c + d

    else  a ← e + f

Example



COMP 412,  Fall 2003 7Comp 412 Fall 2005

Boolean & Relational Values

Conditional move & predication both simplify this code

Both versions avoid the branches
Both are shorter than cond’n codes or Boolean-valued compare
Are they better?

OTHER ARCHITECTURAL VARIATIONS

Conditional Move Predicated Execution

comp rx,ry!cc1 cmp_LT rx,ry!r1

add rc,rd!r1 (r1)? add rc,rd!ra

add re,rf !r2 (¬r1)? add re,rf !ra

i2i_< cc1,r1,r2!ra

if (x < y)
    then a ← c + d
    else  a ← e + f

Example

This may not be realistic



COMP 412,  Fall 2003 8Comp 412 Fall 2005

Boolean & Relational Values

Consider the assignment  x ← a < b ∧ c < d

Here, the boolean compare produces much better code

VARIATIONS ON THE ILOC BRANCH STRUCTURE

Straight Condition Codes Boolean Compare

comp ra,rb!cc1 cmp_LT ra,rb!r1

cbr_LT cc1    "L1,L2 cmp_LT rc,rd!r2

L1: comp rc,rd!cc2 and r1,r2!rx

cbr_LT cc2   "L3,L2

L2: loadI 0     ! rx

br         "LOUT

L3: loadI 1     ! rx

br          "LOUT

LOUT: nop



COMP 412,  Fall 2003 9Comp 412 Fall 2005

Boolean & Relational Values
Conditional move & predication help here, too

Conditional move is worse than Boolean compares
Predication is identical to Boolean compares

The bottom line:
⇒ Context & hardware determine the appropriate choice

OTHER ARCHITECTURAL VARIATIONS

Conditional Move Predicated Execution

comp ra,rb             !cc1 cmp_LT ra,rb!r1

i2i_< cc1,rT,rF !r1 cmp_LT rc,rd!r2

comp rc,rd             !cc2 and r1,r2!rx

i2i_< cc2,rT,rF !r2

and r1,r2             !rx

x ← a < b ∧ c < d



COMP 412,  Fall 2003 10Comp 412 Fall 2005

Control Flow

If-then-else
• Follow model for evaluating relationals & booleans with

branches

Branching versus predication (e.g., IA-64)
• Frequency of execution

— Uneven distribution ⇒ do what it takes to speed common case

• Amount of code in each case
— Unequal amounts means predication may waste issue slots

• Control flow inside the construct
— Any branching activity within the construct complicates the

predicates and makes branches attractive



COMP 412,  Fall 2003 11Comp 412 Fall 2005

Control Flow

Loops
• Evaluate condition before loop (if needed)
• Evaluate condition after loop
• Branch back to the top (if needed)
Merges test with last block of loop body

while, for, do, & until all fit this basic model

Pre-test

Loop body

Post-test

Next block



COMP 412,  Fall 2003 12Comp 412 Fall 2005

Implementing Loops

  loadI 1 ⇒ r1
loadI 1 ⇒ r2
loadI 100 ⇒  r3
cmp_GE r1, r3 ⇒  r4
cbr r4 ⇒ L2, L1

L1:  body

   add r1, r2 ⇒  r1

   cmp_LT r1, r3 ⇒  r5

   cbr r5 ⇒ L1, L2

L2:  next statement

for (i = 1; i< 100; i++) { body }
next statement

Pre-test

Post-test

Initialization



COMP 412,  Fall 2003 13Comp 412 Fall 2005

Break statements

Many modern programming languages include a break
• Exits from the innermost control-flow statement

— Out of the innermost loop
— Out of a case statement

Translates into a jump
• Targets statement outside control-

flow construct
• Creates multiple-exit construct
• Skip in loop goes to next iteration

Only make sense if loop has > 1 block

Pre-test

Loop head

Post-test

Next block

B 1 B 2Break
in B 1

Skip
in B 2



COMP 412,  Fall 2003 14Comp 412 Fall 2005

Control Flow

Case Statements
1 Evaluate the controlling expression
2 Branch to the selected case
3 Execute the code for that case
4 Branch to the statement after the case
Parts 1, 3, & 4 are well understood, part 2 is the key



COMP 412,  Fall 2003 15Comp 412 Fall 2005

Control Flow

Case Statements
1 Evaluate the controlling expression
2 Branch to the selected case
3 Execute the code for that case
4 Branch to the statement after the case                (use break)
Parts 1, 3, & 4 are well understood, part 2 is the key

Strategies
• Linear search  (nested if-then-else constructs)
• Build a table of case expressions & binary search it
• Directly compute an address (requires dense case set)

Surprisingly many
compilers do this

for all cases!


