
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

Code Shape II
Expressions & Assignment

COMP 412
Fall 2005

COMP 412, Fall 2003 2Comp 412 Fall 2005

Road Map for Class
First, look at code shape
• Consider implementations for several language constructs

Then, consider code generation
• Selection, scheduling, & allocation (order dictated by Lab 3)
• Look at modern algorithms & modern architectures
• Lab 3 will give you insight into scheduling

— Solve a really hard problem
— In Lab 1, allocation was over-simplified

If we have time, introduce optimization
• Eliminating redundant computations (as with DAGs)
• Data-flow analysis, maybe SSA-form

Start out with code shape for expressions …

COMP 412, Fall 2003 3Comp 412 Fall 2005

Generating Code for Expressions
The key code quality issue is holding values in registers
• When can a value be safely allocated to a register?

— When only 1 name can reference its value
— Pointers, parameters, aggregates & arrays all cause trouble

• When should a value be allocated to a register?
— When it is both safe & profitable

Encoding this knowledge into the IR
• Use code shape to make it known to every later phase
• Assign a virtual register to anything that can go into one
• Load or store the others at each reference
• ILOC has textual “memory tags” on loads, stores, & calls
• ILOC has a hierarchy of loads & stores (see the digression)
Relies on a strong register allocator

COMP 412, Fall 2003 4Comp 412 Fall 2005

Generating Code for Expressions

The Concept
• Assume an AST as input & ILOC
 as output
• Use a postorder treewalk evaluator
 (visitor pattern in OOD)

> Visits & evaluates children
> Emits code for the op itself
> Returns register with result

• Bury complexity of addressing
 names in routines that it calls

> base(), offset(), & val()
•Works for simple expressions
• Easily extended to other operators
• Does not handle control flow

expr(node) {
 int result, t1, t2;
 switch (type(node)) {
 case ×,÷,+,− :
 t1← expr(left child(node));
 t2← expr(right child(node));
 result ← NextRegister();
 emit (op(node), t1, t2, result);
 break;
 case IDENTIFIER:
 t1← base(node);
 t2← offset(node);
 result ← NextRegister();
 emit (loadAO, t1, t2, result);
 break;
 case NUMBER:
 result ← NextRegister();
 emit (loadI, val(node), none, result);
 break;
 }
 return result;
 }

COMP 412, Fall 2003 5Comp 412 Fall 2005

Generating Code for Expressions

Example:

Produces:

+

x y

expr(“x”) !

 loadI @x " r1

 loadAO rARP, r1 " r2

expr(“y”) !

 loadI @y " r3

 loadAO rARP, r3 " r4

NextRegister() ! r5

emit(add,r2,r4,r5) !

 add r2, r4 " r5

expr(node) {
 int result, t1, t2;
 switch (type(node)) {
 case ×,÷,+,− :
 t1← expr(left child(node));
 t2← expr(right child(node));
 result ← NextRegister();
 emit (op(node), t1, t2, result);
 break;
 case IDENTIFIER:
 t1← base(node);
 t2← offset(node);
 result ← NextRegister();
 emit (loadAO, t1, t2, result);
 break;
 case NUMBER:
 result ← NextRegister();
 emit (loadI, val(node), none, result);
 break;
 }
 return result;
 }

COMP 412, Fall 2003 6Comp 412 Fall 2005

Generating Code for Expressions

Example:

Generates:

−

×x

y2

loadI @x ! r1

loadAO rARP, r1 ! r2

loadI 2 ! r3

loadI @y ! r4

loadAO rARP,r4 ! r5

mult r3, r5 ! r6

sub r2, r6 ! r7

expr(node) {
 int result, t1, t2;
 switch (type(node)) {
 case ×,÷,+,− :
 t1← expr(left child(node));
 t2← expr(right child(node));
 result ← NextRegister();
 emit (op(node), t1, t2, result);
 break;
 case IDENTIFIER:
 t1← base(node);
 t2← offset(node);
 result ← NextRegister();
 emit (loadAO, t1, t2, result);
 break;
 case NUMBER:
 result ← NextRegister();
 emit (loadI, val(node), none, result);
 break;
 }
 return result;
 }

COMP 412, Fall 2003 7Comp 412 Fall 2005

Extending the Simple Treewalk Algorithm
More complex cases for IDENTIFIER
• What about values that reside in registers?

— Modify the IDENTIFIER case
— Already in a register ⇒ return the register name
— Not in a register ⇒ load it as before, but record the fact
— Choose names to avoid creating false dependences

• What about parameter values?
— Many linkages pass the first several values in registers
— Call-by-value ⇒ just a local variable with a negative offset
— Call-by-reference ⇒ negative offset, extra indirection

• What about function calls in expressions?
— Generate the calling sequence & load the return value
— Severely limits compiler’s ability to reorder operations

COMP 412, Fall 2003 8Comp 412 Fall 2005

Extending the Simple Treewalk Algorithm
Adding other operators
• Evaluate the operands, then perform the operation
• Complex operations may turn into library calls
• Handle assignment as an operator

Mixed-type expressions
• Insert conversions as needed from conversion table
• Most languages have symmetric & rational conversion tables

+ Integer Real Double Complex

Integer Integer Real Double Complex

Real Real Real Double Complex

Double Double Double Double Complex

Complex Complex Complex Complex Complex

Typical
Table for
Addition

COMP 412, Fall 2003 9Comp 412 Fall 2005

Extending the Simple Treewalk Algorithm
What about evaluation order?
• Can use commutativity & associativity to improve code
• This problem is truly hard

Commuting operands at one operation is much easier
• 1st operand must be preserved while 2nd is evaluated
• Takes an extra register for 2nd operand
• Should evaluate more demanding operand expression first

(Ershov in the 1950’s, Sethi in the 1970’s)

Taken to its logical conclusion, this creates Sethi-Ullman scheme
for register allocation [301 in EaC]

Local rather
than global

COMP 412, Fall 2003 10Comp 412 Fall 2005

Generating Code in the Parser
Need to generate an initial IR form
• Chapter 4 talks about ASTs & ILOC

• Might generate an AST, use it for some high-level, near-
source work such as type checking and optimization, then
traverse it and emit a lower-level IR similar to ILOC for
further optimization and code generation

The Big Picture
• Recursive algorithm really works bottom-up

— Actions on non-leaves occur after children are done

• Can encode same basic structure into ad-hoc SDT scheme
— Identifiers load themselves & stack virtual register name
— Operators emit appropriate code & stack resulting VR name
— Assignment requires evaluation to an lvalue or an rvalue

COMP 412, Fall 2003 11Comp 412 Fall 2005

Ad-hoc SDT versus a Recursive Treewalk
Goal : Expr { $$ = $1; } ;
Expr: Expr PLUS Term

{ t = NextRegister();
 emit(add,$1,$3,t); $$ = t; }

 | Expr MINUS Term {…}
 | Term { $$ = $1; } ;
Term: Term TIMES Factor

{ t = NextRegister();
 emit(mult,$1,$3,t); $$ = t; };

 | Term DIVIDES Factor {…}
 | Factor { $$ = $1; };
Factor: NUMBER

{ t = NextRegister();
 emit(loadI,val($1),none, t);
 $$ = t; }

 | ID
 { t1 = base($1);
 t2 = offset($1);
 t = NextRegister();
 emit(loadAO,t1,t2,t);
 $$ = t; }

expr(node) {
 int result, t1, t2;
 switch (type(node)) {
 case ×,÷,+,− :
 t1← expr(left child(node));
 t2← expr(right child(node));
 result ← NextRegister();
 emit (op(node), t1, t2, result);
 break;
 case IDENTIFIER:
 t1← base(node);
 t2← offset(node);
 result ← NextRegister();
 emit (loadAO, t1, t2, result);
 break;
 case NUMBER:
 result ← NextRegister();
 emit (loadI, val(node), none, result);
 break;
 }
 return result;
 }

COMP 412, Fall 2003 12Comp 412 Fall 2005

Handling Assignment (just another operator)

lhs ← rhs

Strategy
• Evaluate rhs to a value (an rvalue)
• Evaluate lhs to a location (an lvalue)

— lvalue is a register ⇒ move rhs
— lvalue is an address ⇒ store rhs

• If rvalue & lvalue have different types
— Evaluate rvalue to its “natural” type
— Convert that value to the type of *lvalue

Unambiguous scalars go into registers
Ambiguous scalars or aggregates go into memory

Let
hardware
sort out the
addresses !

COMP 412, Fall 2003 13Comp 412 Fall 2005

Handling Assignment

What if the compiler cannot determine the rhs’s type ?
• This is a property of the language & the specific program
• If type-safety is desired, compiler must insert a run-time

check
• Add a tag field to the data items to hold type information

Code for assignment becomes more complex

evaluate rhs
if type(lhs) ≠ rhs.tag
 then
 convert rhs to type(lhs)
or
 signal a run-time error
lhs ← rhs

This is much more
complex than if it
knew the types

COMP 412, Fall 2003 14Comp 412 Fall 2005

Handling Assignment

Compile-time type-checking
• Goal is to eliminate both the check & the tag
• Determine, at compile time, the type of each subexpression
• Use compile-time types to determine if a run-time check is

needed

Optimization strategy
• If compiler knows the type, move the check to compile-time
• Unless tags are needed for garbage collection, eliminate them
• If check is needed, try to overlap it with other computation

Can design the language so all checks are static

COMP 412, Fall 2003 15Comp 412 Fall 2005

Handling Assignment (with reference counting)

The problem with reference counting
• Must adjust the count on each pointer assignment
• Overhead is significant, relative to assignment
Code for assignment becomes

This adds 1 +, 1 -, 2 loads, & 2 stores

With extra functional units & large caches, the overhead may
become either cheap or free …

evaluate rhs
lhs→count ← lhs→count - 1
lhs ← addr(rhs)
rhs→count ← rhs→count + 1
if (rhs→count = 0)
 free rhs

