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Road Map for Class
First, look at code shape
• Consider implementations for several language constructs

Then, consider code generation
• Selection, scheduling, & allocation    (order dictated by Lab 3)
• Look at modern algorithms & modern architectures
• Lab 3 will give you insight into scheduling

— Solve a really hard problem
— In Lab 1, allocation was over-simplified

If we have time, introduce optimization
• Eliminating redundant computations                  (as with DAGs)
• Data-flow analysis, maybe SSA-form

Start out with code shape for expressions …
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Generating Code for Expressions
The key code quality issue is holding values in registers
• When can a value be safely allocated to a register?

— When only 1 name can reference its value
— Pointers, parameters, aggregates & arrays all cause trouble

• When should a value be allocated to a register?
— When it is both safe & profitable

Encoding this knowledge into the IR
• Use code shape to make it known to every later phase
• Assign a virtual register to anything that can go into one
• Load or store the others at each reference
• ILOC has textual “memory tags” on loads, stores, & calls
• ILOC has a hierarchy of loads & stores     (see the digression)
Relies on a strong register allocator
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Generating Code for Expressions

The Concept
• Assume an AST as input & ILOC
   as output
• Use a postorder treewalk evaluator
   (visitor pattern in OOD)

> Visits & evaluates children
> Emits code for the op itself
> Returns register with result

• Bury complexity of addressing
   names in routines that it calls

> base(), offset(), & val()
•Works for simple expressions
• Easily extended to other operators
• Does not handle control flow

expr(node) {
   int result, t1, t2;
   switch (type(node)) {
         case ×,÷,+,− :
              t1← expr(left child(node));
              t2← expr(right child(node));
              result ← NextRegister();
              emit (op(node), t1, t2, result);
              break;
         case IDENTIFIER:
              t1← base(node);
              t2← offset(node);
              result ← NextRegister();
              emit (loadAO, t1, t2, result);
              break;
         case NUMBER:
              result ← NextRegister();
              emit (loadI, val(node), none, result);
              break;
          }
          return result;
  }
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Generating Code for Expressions

Example:

Produces:

+

x y

expr(“x”) !  

  loadI @x " r1 

  loadAO rARP, r1 " r2 

expr(“y”) !  

  loadI @y " r3 

  loadAO rARP, r3 " r4 

NextRegister() ! r5 

emit(add,r2,r4,r5) !  

  add r2, r4 " r5 
 

 

expr(node) {
   int result, t1, t2;
   switch (type(node)) {
         case ×,÷,+,− :
              t1← expr(left child(node));
              t2← expr(right child(node));
              result ← NextRegister();
              emit (op(node), t1, t2, result);
              break;
         case IDENTIFIER:
              t1← base(node);
              t2← offset(node);
              result ← NextRegister();
              emit (loadAO, t1, t2, result);
              break;
         case NUMBER:
              result ← NextRegister();
              emit (loadI, val(node), none, result);
              break;
          }
          return result;
  }
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Generating Code for Expressions

Example:

Generates:

−

×x

y2

loadI @x ! r1 

loadAO rARP, r1 ! r2 

loadI 2 ! r3 

loadI @y ! r4 

loadAO rARP,r4 ! r5 

mult r3, r5 ! r6 

sub r2, r6 ! r7 
 

 

expr(node) {
   int result, t1, t2;
   switch (type(node)) {
         case ×,÷,+,− :
              t1← expr(left child(node));
              t2← expr(right child(node));
              result ← NextRegister();
              emit (op(node), t1, t2, result);
              break;
         case IDENTIFIER:
              t1← base(node);
              t2← offset(node);
              result ← NextRegister();
              emit (loadAO, t1, t2, result);
              break;
         case NUMBER:
              result ← NextRegister();
              emit (loadI, val(node), none, result);
              break;
          }
          return result;
  }
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Extending the Simple Treewalk Algorithm
More complex cases for IDENTIFIER
• What about values that reside in registers?

— Modify the  IDENTIFIER case
— Already in a register ⇒ return the register name
— Not in a register ⇒ load it as before, but record the fact
— Choose names to avoid creating false dependences

• What about parameter values?
— Many linkages pass the first several values in registers
— Call-by-value ⇒ just a local variable with a negative offset
— Call-by-reference ⇒ negative offset, extra indirection

• What about function calls in expressions?
— Generate the calling sequence & load the return value
— Severely limits compiler’s ability to reorder operations
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Extending the Simple Treewalk Algorithm
Adding other operators
• Evaluate the operands, then perform the operation
• Complex operations may turn into library calls
• Handle assignment as an operator

Mixed-type expressions
• Insert conversions as needed from conversion table
• Most languages have symmetric & rational conversion tables

+ Integer Real Double Complex

Integer Integer Real Double Complex

Real Real Real Double Complex

Double Double Double Double Complex

Complex Complex Complex Complex Complex

Typical
Table for
Addition
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Extending the Simple Treewalk Algorithm
What about evaluation order?
• Can use commutativity & associativity to improve code
• This problem is truly hard

Commuting operands at one operation is much easier
• 1st operand must be preserved while 2nd is evaluated
• Takes an extra register for 2nd operand
• Should evaluate more demanding operand expression first

(Ershov in the 1950’s, Sethi in the 1970’s)

Taken to its logical conclusion, this creates Sethi-Ullman scheme
for register allocation                                            [301 in EaC]

Local rather
than global
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Generating Code in the Parser
Need to generate an initial IR form
• Chapter 4 talks about ASTs & ILOC

• Might generate an AST, use it for some high-level, near-
source work such as type checking and optimization, then
traverse it and emit a lower-level IR similar to ILOC for
further optimization and code generation

The Big Picture
• Recursive algorithm really works bottom-up

— Actions on non-leaves occur after children are done

• Can encode same basic structure into ad-hoc SDT scheme
— Identifiers load themselves & stack virtual register name
— Operators emit appropriate code & stack resulting VR name
— Assignment requires evaluation to an lvalue or an rvalue
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Ad-hoc SDT versus a Recursive Treewalk
Goal : Expr  { $$ = $1; } ;
Expr: Expr PLUS Term

{ t = NextRegister();
  emit(add,$1,$3,t); $$ = t; }

        | Expr MINUS Term  {…}
        | Term { $$ = $1; } ;
Term: Term TIMES Factor

{ t = NextRegister();
  emit(mult,$1,$3,t); $$ = t; };

        | Term DIVIDES Factor {…}
        | Factor { $$ = $1; };
Factor: NUMBER

{ t = NextRegister();
  emit(loadI,val($1),none, t );
  $$ = t; }

        | ID
 { t1 = base($1);
   t2 = offset($1);
   t = NextRegister();
  emit(loadAO,t1,t2,t);
  $$ =  t; }

expr(node) {
   int result, t1, t2;
   switch (type(node)) {
         case ×,÷,+,− :
              t1← expr(left child(node));
              t2← expr(right child(node));
              result ← NextRegister();
              emit (op(node), t1, t2, result);
              break;
         case IDENTIFIER:
              t1← base(node);
              t2← offset(node);
              result ← NextRegister();
              emit (loadAO, t1, t2, result);
              break;
         case NUMBER:
              result ← NextRegister();
              emit (loadI, val(node), none, result);
              break;
          }
          return result;
  }



COMP 412,  Fall 2003 12Comp 412 Fall 2005

Handling Assignment         (just another operator)

lhs ← rhs

Strategy
• Evaluate rhs to a value                                          (an rvalue)
• Evaluate lhs to a location                                       (an lvalue)

— lvalue is a register ⇒ move rhs
— lvalue is an address ⇒ store rhs

• If rvalue & lvalue have different types
— Evaluate rvalue to its “natural” type
— Convert that value to the type of *lvalue

Unambiguous scalars go into registers
Ambiguous scalars or aggregates go into memory

Let
hardware
sort out the
addresses !
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Handling Assignment

What if the compiler cannot determine the rhs’s type ?
• This is a property of the language & the specific program
• If type-safety is desired, compiler must insert a run-time

check
• Add a tag  field to the data items to hold type information

Code for assignment becomes more complex

evaluate rhs
if type(lhs) ≠ rhs.tag
   then
      convert rhs to type(lhs)
or
      signal a run-time error
lhs ← rhs

This is much more
complex than if it
knew the types
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Handling Assignment

Compile-time type-checking
• Goal is to eliminate both the check & the tag
• Determine, at compile time, the type of each subexpression
• Use compile-time types to determine if a run-time check is

needed

Optimization strategy
• If compiler knows the type, move the check to compile-time
• Unless tags are needed for garbage collection, eliminate them
• If check is needed, try to overlap it with other computation

Can design the language so all checks are static
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Handling Assignment      (with reference counting)

The problem with reference counting
• Must adjust the count on each pointer assignment
• Overhead is significant, relative to assignment
Code for assignment becomes

This adds 1 +, 1 -, 2 loads, & 2 stores

With extra functional units & large caches, the overhead may
become either cheap or free …

evaluate rhs
lhs→count ← lhs→count - 1
lhs ← addr(rhs)
rhs→count ← rhs→count + 1
if (rhs→count = 0)
   free rhs


