
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

Introduction to Code Generation

COMP 412
Fall 2005

COMP 412, Fall 2003 2Comp 412 Fall 2005

Structure of a Compiler

A compiler is a lot of fast stuff followed by some hard problems
— The hard stuff is mostly in code generation and optimization
— For superscalars, its allocation & scheduling that count

Instruction
Selection

Register
Allocation

Instruction
Scheduling

Scanner Parser
Analysis

&
Optimization

O(n log n) to
ExponentialO(n)O(n)

NP-Complete NP-CompleteEither fast or
NP-Complete

words IR

IR
asm asm asm

∞
regs

∞
regs

k
regs

COMP 412, Fall 2003 3Comp 412 Fall 2005

Structure of a Compiler

For the rest of 412, we assume the following model

• Selection is fairly simple (problem of the 1980s)
• Allocation & scheduling are complex
• Operation placement is not yet critical (unified register set)

What about the IR ?
• Low-level, RISC-like IR called ILOC

• Has “enough” registers
• ILOC was designed for this stuff

Instruction
Selection

Instruction
Scheduling

Register
Allocation

Analysis
&

Optimization

IR asm asm

∞
regs

∞
regs

∞
regs

∞
regs

k
regs

asmIR

Branches, compares, & labels
Memory tags
Hierarchy of loads & stores
Provision for multiple ops/cycle

COMP 412, Fall 2003 4Comp 412 Fall 2005

Definitions
Instruction selection
• Mapping IR into assembly code
• Assumes a fixed storage mapping & code shape
• Combining operations, using address modes

Instruction scheduling
• Reordering operations to hide latencies
• Assumes a fixed program (set of operations)
• Changes demand for registers

Register allocation
• Deciding which values will reside in registers
• Changes the storage mapping, may add false sharing
• Concerns about placement of data & memory operations

These 3 problems
are tightly coupled.

COMP 412, Fall 2003 5Comp 412 Fall 2005

The Big Picture

How hard are these problems?

Instruction selection
• Can make locally optimal choices, with automated tool
• Global optimality is (undoubtedly) NP-Complete

Instruction scheduling
• Single basic block ⇒ heuristics work quickly
• General problem, with control flow ⇒ NP-Complete

Register allocation
• Single basic block, no spilling, & 1 register size ⇒ linear time
• Whole procedure is NP-Complete

COMP 412, Fall 2003 6Comp 412 Fall 2005

The Big Picture
Conventional wisdom says that we lose little

by solving these problems independently

Instruction selection
• Use some form of pattern matching
• Assume enough registers or target “important” values

Instruction scheduling
• Within a block, list scheduling is “close” to optimal
• Across blocks, build framework to apply list scheduling

Register allocation
• Start from virtual registers & map “enough” into k

This slide is full of
“fuzzy” terms

Optimal for
> 85% of blocks

COMP 412, Fall 2003 7Comp 412 Fall 2005

The Big Picture
What are today’s hard issues or hot issues?

Instruction selection
• Making actual use of the tools
• Impact of choices on power and on functional unit placement

Instruction scheduling
• Modulo scheduling loops, particularly with control flow
• Schemes for scheduling memory “prefetch” operations

Register allocation
• Cost of allocation, particularly for JITs & dyn. optimizers
• Better spilling (space & speed)? SSA-based allocators?

COMP 412, Fall 2003 8Comp 412 Fall 2005

Code Shape - the Next Chapter
Definition
• All those nebulous properties of the code that impact

performance
• Includes code, approach for different constructs, cost,

storage requirements & mapping, & choice of operations
• Code shape is the end product of many decisions (big & small)

Impact
• Code shape influences algorithm choice & results
• Code shape can encode important facts, or hide them

Rule of thumb: expose as much derived information as possible
• Example: explicit branch targets in ILOC simplify analysis
• Example: hierarchy of memory operations in ILOC (EaC, p 237)

See Morgan’s book for more ILOC examples

COMP 412, Fall 2003 9Comp 412 Fall 2005

Code Shape
Cooper’s favorite example

• What if x is 2 and z is 3?
• What if y+z is evaluated earlier?

The “best” shape for x+y+z depends on contextual knowledge
— There may be several conflicting options

x + y + z x + y → t1

t1+ z → t2

x + z → t1

t1+ y → t2

y + z → t1

t1+ z → t2
+

zyx

+

+

z

yx

+

+

y

zx

+

+

x

zy

Addition is commutative
& associative for integers

COMP 412, Fall 2003 10Comp 412 Fall 2005

Code Shape
Another example -- the case statement
• Implement it as cascaded if-then-else statements

— Cost depends on where your case actually occurs
— O(number of cases)

• Implement it as a binary search
— Need a dense set of conditions to search
— Uniform (log n) cost

• Implement it as a jump table
— Lookup address in a table & jump to it
— Uniform (constant) cost

Compiler must choose best implementation strategy
No amount of massaging or transforming will convert one into

another

Performance depends
on order of cases!

COMP 412, Fall 2003 11Comp 412 Fall 2005

Code Shape

Why worry about code shape? Can’t we just trust the
optimizer and the back end?

• Optimizer and back end approximate answers to many
 hard problems

• The compiler’s individual passes must run quickly

• It often pays to encode useful information into the IR
— Shape of an expression or a control structure
— A value kept in a register rather than in memory

• Deriving such information would be expensive
• Writing it down in the IR is often easier and cheaper

