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Structure of a Compiler

A compiler is a lot of fast stuff followed by some hard problems
— The hard stuff is mostly in code generation and optimization
— For superscalars, its allocation & scheduling that count
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Structure of a Compiler

For the rest of 412, we assume the following model

• Selection is fairly simple (problem of the 1980s)
• Allocation & scheduling are complex
• Operation placement is not yet critical     (unified register set)

What about the IR ?
• Low-level, RISC-like IR called ILOC

• Has “enough” registers
• ILOC was designed for this stuff
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Definitions
Instruction selection
• Mapping IR into assembly code
• Assumes a fixed storage mapping & code shape
• Combining operations, using address modes

Instruction scheduling
• Reordering operations to hide latencies
• Assumes a fixed program  (set of operations)
• Changes demand for registers

Register allocation
• Deciding which values will reside in registers
• Changes the storage mapping, may add false sharing
• Concerns about placement of data & memory operations

These 3 problems
are tightly coupled.
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The Big Picture

How hard are these problems?

Instruction selection
• Can make locally optimal choices, with automated tool
• Global optimality is (undoubtedly) NP-Complete

Instruction scheduling
• Single basic block  ⇒ heuristics work quickly
• General problem, with control flow  ⇒ NP-Complete

Register allocation
• Single basic block, no spilling, & 1 register size  ⇒ linear time
• Whole procedure is NP-Complete
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The Big Picture
Conventional wisdom says that we lose little

by solving these problems independently

Instruction selection
• Use some form of pattern matching
• Assume enough registers or target “important” values

Instruction scheduling
• Within a block, list scheduling is “close” to optimal
• Across blocks, build framework to apply list scheduling

Register allocation
• Start from virtual registers & map “enough” into k

This slide is full of
“fuzzy” terms

Optimal for
> 85% of blocks
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The Big Picture
What are today’s hard issues or hot issues?

Instruction selection
• Making actual use of the tools
• Impact of choices on power and on functional unit placement

Instruction scheduling
• Modulo scheduling loops, particularly with control flow
• Schemes for scheduling memory “prefetch” operations

Register allocation
• Cost of allocation, particularly for JITs & dyn. optimizers
• Better spilling (space & speed)?  SSA-based allocators?
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Code  Shape - the Next Chapter
Definition
• All those nebulous properties of the code that impact

performance
• Includes code, approach for different constructs, cost,

storage requirements & mapping, & choice of operations
• Code shape is the end product of many decisions  (big & small)

Impact
• Code shape influences algorithm choice & results
• Code shape can encode important facts, or hide them

Rule of thumb: expose as much derived information as possible
• Example: explicit branch targets in ILOC simplify analysis
• Example: hierarchy of memory operations in ILOC  (EaC, p 237)

See Morgan’s book for more ILOC examples
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Code Shape
Cooper’s favorite example

• What if x is 2 and z is 3?
• What if y+z is evaluated earlier?

The “best” shape for x+y+z depends on contextual knowledge
— There may be several conflicting options

x + y + z x + y → t1

t1+ z → t2

x + z → t1

t1+ y → t2

y + z → t1

t1+ z → t2
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Addition is commutative
& associative for integers
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Code Shape
Another example -- the case statement
• Implement it as cascaded if-then-else statements

— Cost depends on where your case actually occurs
— O(number of cases)

• Implement it as a binary search
— Need a dense set of conditions to search
— Uniform (log n) cost

• Implement it as a jump table
— Lookup address in a table & jump to it
— Uniform (constant) cost

Compiler must choose best implementation strategy
No amount of massaging or transforming will convert one into

another

Performance depends
on order of cases!
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Code Shape

Why worry about code shape?  Can’t we just trust the
optimizer and the back end?

• Optimizer and back end approximate answers to many
     hard problems

• The compiler’s individual passes must run quickly

• It often pays to encode useful information into the IR
— Shape of an expression or a control structure
— A value kept in a register rather than in memory

• Deriving such information would be expensive
• Writing it down in the IR is often easier and cheaper


