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What about  Object-Oriented Languages?

What is an OOL?
• A language that supports “object-oriented programming”

How does an OOL differ from an ALL?  (ALGOL-Like Language)

• Data-centric name scopes for values & functions
• Dynamic resolution of names to their implementations

How do we compile OOLs ?
• Need to define what we mean by an OOL
• Term is almost meaningless today —

— Smalltalk to C++ to Java

• We will focus on Java and C++
• Differences from an ALL lie naming and addressability
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Object-Oriented Languages
An object is an abstract data type that encapsulates data,
operations and internal state behind a simple, consistent interface.

Elaborating the concepts:
• Each object needs local storage for its internal state

— Attributes are static (lifetime of object )
— External access is through procedures

• Some methods are public, others are private
— Locating a procedure by name is more complex than in an ALL

• Object’s internal state leads to complex behavior

Data

Code

x

Data

Code

y Data

Code

z

The Concept:

Data members,
variables

Code members,
methods
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OOLs & the Procedure Abstraction

What is the shape of an OOL’s name space?
• Local storage in objects   (beyond attributes)
• Some storage associated with methods

— Local values inside a method
— Static values with lifetimes beyond methods

• Methods shared among multiple objects

Classes
• Objects with the same state are grouped into a class

— Same code, same data, same naming environment
— Class members are static & shared among instances of the class

• Allows abstraction-oriented naming
• Should foster code reuse in both source & implementation

In some OOLs, everything
is an object.
In others, variables co-
exist with objects &
inside objects.

members
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Implementing Object-Oriented Languages

So, what can an executing method see?
• The object’s own members

— Smalltalk terminology: instance variables
• The members of the class that defines it

— Smalltalk terminology: class variables and methods
• Any object defined in the global name space                   (scope)

— Objects may contain other objects (!?!)

An executing method might reference any of these

An OOL resembles an ALL, with a wildly different name space
• Scoping is relative to hierarchy in the data of an OOL
• Scoping is relative to hierarchy in the code of an ALL
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Implementing Object-Oriented Languages

So, what can an executing method see?
• The object’s own members

— Smalltalk terminology: instance variables
• The members of the class that defines it

— Smalltalk terminology: class variables and methods
• Any object defined in the global name space                   (scope)

— Objects may contain other objects (!?!)

An executing method might reference any of these

A final twist:
• Most OOLs support a hierarchical notion of inheritance
• Some OOLs support multiple inheritance

— More than one path through the inheritance hierarchy
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Java Name Space

Code within a method M for object O of class C can see:
• Local variables declared within M       (lexical scoping)
• All instance variables & class variables of C
• All public and protected variables of any superclass of C
• Classes defined in the same package as C or in any explicitly

imported package
— public class variables and public instance variables of imported

classes
— package class and instance variables in the package containing C

• Class declarations can be nested!
— These member declarations hide outer class declarations of the

same name                      (lexical scoping)
— Accessibility: public, private, protected, package
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Java Name Spaces
Class Point {

public int x, y;
public void draw();

}
Class ColorPoint extends Point {  // inherits x, y, & draw() from Point

Color c;  // local data
public void draw() {…}  // override (hide) Point’s draw
public void test() { y = x; draw(); }  //  local code

}
Class C {  // independent of Point & ColorPoint

int x, y; // local data
public void m()  // local code
{

Point p = new ColorPoint();  // uses ColorPoint, and, by inheritance
y = p.x;    // the definitions from Point
p.draw();

}
}

We will use and
extend this example
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Java Symbol Tables

To compile code in method M of object O with class C,
the compiler needs:

• Lexically scoped symbol table for block and class nesting
— Just like ALL — inner declarations hide outer declarations

• Chain of symbol tables for inheritance
— Need mechanism to find the class and instance variables of all

superclasses

• Symbol tables for all global classes (package scope)
— Entries for all members with visibility
— Need to construct symbol tables for imported packages and

link them into the structure in appropriate places
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Java Symbol Tables
To find the address associated with a variable reference in
    method M for an object O within a class C, the compiler must
• For an unqualified use (i.e., x):

— Search the scoped symbol table for the current method
— Search the chain of symbol tables for the class hierarchy
— Search global symbol table (current package and imported)

– Look for class (or interface)
— In each case check visibility attribute of x

• For a qualified use (i.e.: Q.x):
— Find Q by the method above
— Search from Q for x

– Must be a class or instance variable of Q or some class it
extends

— Check visibility attribute of x Think back to “sheaf of
tables” implementation
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Implementing Object-Oriented Languages

Two critical issues in OOL implementation:
• Object representation
• Mapping a method invocation name to a method implementation
These both are intimately related to the OOL’s name space

Object Representation
• Static, private storage for attributes & instance variables

— Heap allocate object records or “instances”

• Need consistent, fast access
— Known, constant offsets from start

• Provision for initialization in NEW fee() fie() foe() count
0 4 8 12

x
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OOL Storage Layout   (Java)
Class variables
• Static class storage accessible by global name   (class C )

— Accessible via linkage symbol &_C or pointer chain from object
— Nested classes are handled like blocks in ALLs
— Method code put at fixed offset from start of class area

Object Representation
• Object storage is heap allocated

— Fields at fixed offsets from start of object storage

• Methods
— Code for methods is stored with the class
— Methods accessed by offsets in class ’ code vector (or table)

– Allows method references inline
— Method local storage in object (no calls) or on stack

“leaf” routine in an ALL

fee() fie() foe() count
x

0 4 8 12

AR as in an ALL
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OOL Storage Layout

A minor problem
• The compiler must generate code for all these methods

— Offsets must be consistent up and down the class hierarchy
— If x is at offset 4 in an instance of Point, it must be at offset

4 in instances of classes that extend Point (e.g., ColorPoint)

• The compiler needs this consistency to generate code
— Largely an issue of storage layout

STOP
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OOL Storage Layout

To map names into addresses at runtime
• An ALL converts the name into a static coordinate

— Coordinate for variable turns into actions with runtime data
structures that support addressability      (access links or display)

— Coordinate for procedure name turns into a relocatable
mangled label for direct use in a load or jump

• Can we resolve names in an OOL with the same tricks?
— Static coordinates?
— Runtime links through AR s or a display-like structure

• Variable access must follow inheritance, not invocations
• Procedure calls are too frequent to allow excess overhead

— Following a chain of pointers would be disastrously expensive
— Reducing cost of “dispatch” is a key performance issue
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Variable Storage with Single Inheritance

• Use prefixing of storage

Class Point {
int x, y;

}

Class ColorPoint extends Point {
Color c;

}

x

y

x

y

c

self

Does casting work properly?

self
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Implementing Object-Oriented Languages

Mapping message names to methods
• Static mapping, known at compile-time                 (C++)

— Fixed offsets & indirect calls

• Dynamic mapping, unknown until run-time              (Smalltalk)
— Lookup by textual name in class’ table of methods
— Walk up the (single) inheritance tree

Want uniform placement of standard services  (NEW, PRINT, …)

This is really a data-structures problem
• Build a vector of function pointers                     (code vector)
• Use a standard calling sequence



COMP 412,  Fall 2002 17Comp 412 Fall 2005

Implementing Object-Oriented Languages

With static, compile-time mapped classes   (no inheritance)

fee()

fie()

foe()

fum()

Class A

i j k•
z

i j k•
y

i j k•
x band()

bend()

bind()

bond()

Class B

a b c•
p

a b c•
n

a b c•
m

Message dispatch becomes an indirect call through a function table



COMP 412,  Fall 2002 18Comp 412 Fall 2005

The Single Inheritance Hierarchy
The Concept:

•

x

y

•

•

•

Class One

fee()

fie()

foe()

Object
record

Code
vector
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The Single Inheritance Hierarchy

The Concept of Single Inheritance:

Object record of two has OR of
one as its prefix

Code vector of two has CV of one as its prefix
— Direct references to code bodies defined for one

•

a

b

•

•

•

Class One

fee()

fie()

foe()

•

x

y

•

•

•

Class Two extends One
and uses fie() & foe() from One

fee()

fum()
z •
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Dynamic Dispatch with Single Inheritance

• To handle inheritance, prefix the code vectors. too

Class Point {
int x, y;
public void draw();
public void d2o();

}

Class ColorPoint extends Point {
Color c;
public void draw();
public void rev();

}

x

y

table draw

d2o

draw

d2o

table

rev

Point: draw

ColorPoint:draw

ColorPoint: rev

Point: d20

self

x

y

c

self
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The Single Inheritance Hierarchy
Two distinct philosophies

Impact on name space
• Method can see instance variables of self, class, & superclasses
• Many different levels where a value can reside
In essence, OOL differs from ALL in the shape of its name space

AND in the mechanism used to bind names to implementations

Static class structure
• Can map name to code at
   compile time
• Leads to 1-level code vector
• Copy superclass methods
• Fixed offsets & indirect calls
• Less flexible & expressive

Dynamic class structure
• Cannot map name to code
   at compile time
• Multiple jump vectors (1/class)
• Must search for method
• Run-time lookups caching
• Much more expensive to run

STOP

 Runtime changes             (Java)
• Variable storage by prefixes
• Limit changes in instantiated
   classes
• Use 1-level code vectors and
   rebuild on hierarchy change
• Fixed offsets & 1-level of
   indirection on calls
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Multiple Inheritance
The idea
• Allow more flexible sharing of methods & attributes
• Relax the inclusion requirement
    If B is a subclass of A, it need not implement all of A’s methods
• Need a linguistic mechanism for specifying partial inheritance

Problems when C inherits from both A & B
• C’s method table can extend A or B, but not both

— Layout of an object record for C becomes tricky
• Other classes, say D, can inherit from C & B

— Adjustments to offsets become complex
• Both A & B might provide fum() — which is seen in C ?

— C++ produces a “syntax error” when fum() is  used

Need a better way
to say “inherit”
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Variable Storage with Multiple Inheritance

• Use prefixing of storage

Class Point {
int x, y;

}

Class ColoredThing {
Color c;

}

Class ColorPoint extends 
Point,  ColoredThing {

}

x

y

x

y

c

self

Does casting work properly?

self

self

c
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Multiple Inheritance Example

• Use prefixing of storage & code vectors

Class Point {
int x, y;
void draw();
void d2o();

}

Class CThing {
Color c;
void rev();

}

Class Cpoint
extends

Point, CThing {
void draw()

}

x

y

x

y

c

self

self

self

c

table

table

table

table

draw

d2o

draw

d2o

rev

Point: draw

CPoint:draw

Point: d20

rev CThing: rev

rev

self +=12
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Casting with Multiple Inheritance

• Usage as Point:
— No extra action (prefixing does everything)

• Usage as CThing:
— Increment self by 12

• Usage as CPoint:
— Lay out data for CThing at self + 16
— When calling rev

– Call in table points to a trampoline function that adds 12 to
self, then calls rev

– Ensures that rev, which assumes that self points to a
CThing data area, gets the right data
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Multiple Inheritance (Example)

Assume that C inherits fee() from A, fie() from B,
 & defines both foe() and fum()

Object record for an instance of C

A vars B vars C vars•

fee() fie() foe() fum()

+ offset

code code code code

This implementation
• Uses a trampoline function
• Optimizes well with inlining
• Overhead only incurred where
   it is really necessary
• Folds inheritance into data
   structure, rather than linkage

Assumes a static class structure
Rebuild it on a change in the
inheritance hierarchy

•

fie() Trampoline function
for call as a ‘C’
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Extra Slides Start Here
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Multiple Inheritance  with Offsets   (Example)

Assume that C inherits fee() from A, fie() from B,
      & defines both foe() & fum().

Object record for an instance of C

To make this work, calls must add offset to self
Works, but adds overhead to each method invocation

k

fee()offset (0)

fie()offset (0)

A • B •A vars B vars C varsx

fie()offset (k) foe() fum()offset (0) offset (0)


