
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

The Procedure Abstraction
Part V: Support for OOLs

COMP 412
Fall 2005

COMP 412, Fall 2002 2Comp 412 Fall 2005

What about Object-Oriented Languages?

What is an OOL?
• A language that supports “object-oriented programming”

How does an OOL differ from an ALL? (ALGOL-Like Language)

• Data-centric name scopes for values & functions
• Dynamic resolution of names to their implementations

How do we compile OOLs ?
• Need to define what we mean by an OOL
• Term is almost meaningless today —

— Smalltalk to C++ to Java

• We will focus on Java and C++
• Differences from an ALL lie naming and addressability

COMP 412, Fall 2002 3Comp 412 Fall 2005

Object-Oriented Languages
An object is an abstract data type that encapsulates data,
operations and internal state behind a simple, consistent interface.

Elaborating the concepts:
• Each object needs local storage for its internal state

— Attributes are static (lifetime of object)
— External access is through procedures

• Some methods are public, others are private
— Locating a procedure by name is more complex than in an ALL

• Object’s internal state leads to complex behavior

Data

Code

x

Data

Code

y Data

Code

z

The Concept:

Data members,
variables

Code members,
methods

COMP 412, Fall 2002 4Comp 412 Fall 2005

OOLs & the Procedure Abstraction

What is the shape of an OOL’s name space?
• Local storage in objects (beyond attributes)
• Some storage associated with methods

— Local values inside a method
— Static values with lifetimes beyond methods

• Methods shared among multiple objects

Classes
• Objects with the same state are grouped into a class

— Same code, same data, same naming environment
— Class members are static & shared among instances of the class

• Allows abstraction-oriented naming
• Should foster code reuse in both source & implementation

In some OOLs, everything
is an object.
In others, variables co-
exist with objects &
inside objects.

members

COMP 412, Fall 2002 5Comp 412 Fall 2005

Implementing Object-Oriented Languages

So, what can an executing method see?
• The object’s own members

— Smalltalk terminology: instance variables
• The members of the class that defines it

— Smalltalk terminology: class variables and methods
• Any object defined in the global name space (scope)

— Objects may contain other objects (!?!)

An executing method might reference any of these

An OOL resembles an ALL, with a wildly different name space
• Scoping is relative to hierarchy in the data of an OOL
• Scoping is relative to hierarchy in the code of an ALL

COMP 412, Fall 2002 6Comp 412 Fall 2005

Implementing Object-Oriented Languages

So, what can an executing method see?
• The object’s own members

— Smalltalk terminology: instance variables
• The members of the class that defines it

— Smalltalk terminology: class variables and methods
• Any object defined in the global name space (scope)

— Objects may contain other objects (!?!)

An executing method might reference any of these

A final twist:
• Most OOLs support a hierarchical notion of inheritance
• Some OOLs support multiple inheritance

— More than one path through the inheritance hierarchy

COMP 412, Fall 2002 7Comp 412 Fall 2005

Java Name Space

Code within a method M for object O of class C can see:
• Local variables declared within M (lexical scoping)
• All instance variables & class variables of C
• All public and protected variables of any superclass of C
• Classes defined in the same package as C or in any explicitly

imported package
— public class variables and public instance variables of imported

classes
— package class and instance variables in the package containing C

• Class declarations can be nested!
— These member declarations hide outer class declarations of the

same name (lexical scoping)
— Accessibility: public, private, protected, package

COMP 412, Fall 2002 8Comp 412 Fall 2005

Java Name Spaces
Class Point {

public int x, y;
public void draw();

}
Class ColorPoint extends Point { // inherits x, y, & draw() from Point

Color c; // local data
public void draw() {…} // override (hide) Point’s draw
public void test() { y = x; draw(); } // local code

}
Class C { // independent of Point & ColorPoint

int x, y; // local data
public void m() // local code
{

Point p = new ColorPoint(); // uses ColorPoint, and, by inheritance
y = p.x; // the definitions from Point
p.draw();

}
}

We will use and
extend this example

COMP 412, Fall 2002 9Comp 412 Fall 2005

Java Symbol Tables

To compile code in method M of object O with class C,
the compiler needs:

• Lexically scoped symbol table for block and class nesting
— Just like ALL — inner declarations hide outer declarations

• Chain of symbol tables for inheritance
— Need mechanism to find the class and instance variables of all

superclasses

• Symbol tables for all global classes (package scope)
— Entries for all members with visibility
— Need to construct symbol tables for imported packages and

link them into the structure in appropriate places

COMP 412, Fall 2002 10Comp 412 Fall 2005

Java Symbol Tables
To find the address associated with a variable reference in
 method M for an object O within a class C, the compiler must
• For an unqualified use (i.e., x):

— Search the scoped symbol table for the current method
— Search the chain of symbol tables for the class hierarchy
— Search global symbol table (current package and imported)

– Look for class (or interface)
— In each case check visibility attribute of x

• For a qualified use (i.e.: Q.x):
— Find Q by the method above
— Search from Q for x

– Must be a class or instance variable of Q or some class it
extends

— Check visibility attribute of x Think back to “sheaf of
tables” implementation

COMP 412, Fall 2002 11Comp 412 Fall 2005

Implementing Object-Oriented Languages

Two critical issues in OOL implementation:
• Object representation
• Mapping a method invocation name to a method implementation
These both are intimately related to the OOL’s name space

Object Representation
• Static, private storage for attributes & instance variables

— Heap allocate object records or “instances”

• Need consistent, fast access
— Known, constant offsets from start

• Provision for initialization in NEW fee() fie() foe() count
0 4 8 12

x

COMP 412, Fall 2002 12Comp 412 Fall 2005

OOL Storage Layout (Java)
Class variables
• Static class storage accessible by global name (class C)

— Accessible via linkage symbol &_C or pointer chain from object
— Nested classes are handled like blocks in ALLs
— Method code put at fixed offset from start of class area

Object Representation
• Object storage is heap allocated

— Fields at fixed offsets from start of object storage

• Methods
— Code for methods is stored with the class
— Methods accessed by offsets in class ’ code vector (or table)

– Allows method references inline
— Method local storage in object (no calls) or on stack

“leaf” routine in an ALL

fee() fie() foe() count
x

0 4 8 12

AR as in an ALL

COMP 412, Fall 2002 13Comp 412 Fall 2005

OOL Storage Layout

A minor problem
• The compiler must generate code for all these methods

— Offsets must be consistent up and down the class hierarchy
— If x is at offset 4 in an instance of Point, it must be at offset

4 in instances of classes that extend Point (e.g., ColorPoint)

• The compiler needs this consistency to generate code
— Largely an issue of storage layout

STOP

COMP 412, Fall 2002 14Comp 412 Fall 2005

OOL Storage Layout

To map names into addresses at runtime
• An ALL converts the name into a static coordinate

— Coordinate for variable turns into actions with runtime data
structures that support addressability (access links or display)

— Coordinate for procedure name turns into a relocatable
mangled label for direct use in a load or jump

• Can we resolve names in an OOL with the same tricks?
— Static coordinates?
— Runtime links through AR s or a display-like structure

• Variable access must follow inheritance, not invocations
• Procedure calls are too frequent to allow excess overhead

— Following a chain of pointers would be disastrously expensive
— Reducing cost of “dispatch” is a key performance issue

COMP 412, Fall 2002 15Comp 412 Fall 2005

Variable Storage with Single Inheritance

• Use prefixing of storage

Class Point {
int x, y;

}

Class ColorPoint extends Point {
Color c;

}

x

y

x

y

c

self

Does casting work properly?

self

COMP 412, Fall 2002 16Comp 412 Fall 2005

Implementing Object-Oriented Languages

Mapping message names to methods
• Static mapping, known at compile-time (C++)

— Fixed offsets & indirect calls

• Dynamic mapping, unknown until run-time (Smalltalk)
— Lookup by textual name in class’ table of methods
— Walk up the (single) inheritance tree

Want uniform placement of standard services (NEW, PRINT, …)

This is really a data-structures problem
• Build a vector of function pointers (code vector)
• Use a standard calling sequence

COMP 412, Fall 2002 17Comp 412 Fall 2005

Implementing Object-Oriented Languages

With static, compile-time mapped classes (no inheritance)

fee()

fie()

foe()

fum()

Class A

i j k•
z

i j k•
y

i j k•
x band()

bend()

bind()

bond()

Class B

a b c•
p

a b c•
n

a b c•
m

Message dispatch becomes an indirect call through a function table

COMP 412, Fall 2002 18Comp 412 Fall 2005

The Single Inheritance Hierarchy
The Concept:

•

x

y

•

•

•

Class One

fee()

fie()

foe()

Object
record

Code
vector

COMP 412, Fall 2002 19Comp 412 Fall 2005

The Single Inheritance Hierarchy

The Concept of Single Inheritance:

Object record of two has OR of
one as its prefix

Code vector of two has CV of one as its prefix
— Direct references to code bodies defined for one

•

a

b

•

•

•

Class One

fee()

fie()

foe()

•

x

y

•

•

•

Class Two extends One
and uses fie() & foe() from One

fee()

fum()
z •

COMP 412, Fall 2002 20Comp 412 Fall 2005

Dynamic Dispatch with Single Inheritance

• To handle inheritance, prefix the code vectors. too

Class Point {
int x, y;
public void draw();
public void d2o();

}

Class ColorPoint extends Point {
Color c;
public void draw();
public void rev();

}

x

y

table draw

d2o

draw

d2o

table

rev

Point: draw

ColorPoint:draw

ColorPoint: rev

Point: d20

self

x

y

c

self

COMP 412, Fall 2002 21Comp 412 Fall 2005

The Single Inheritance Hierarchy
Two distinct philosophies

Impact on name space
• Method can see instance variables of self, class, & superclasses
• Many different levels where a value can reside
In essence, OOL differs from ALL in the shape of its name space

AND in the mechanism used to bind names to implementations

Static class structure
• Can map name to code at
 compile time
• Leads to 1-level code vector
• Copy superclass methods
• Fixed offsets & indirect calls
• Less flexible & expressive

Dynamic class structure
• Cannot map name to code
 at compile time
• Multiple jump vectors (1/class)
• Must search for method
• Run-time lookups caching
• Much more expensive to run

STOP

 Runtime changes (Java)
• Variable storage by prefixes
• Limit changes in instantiated
 classes
• Use 1-level code vectors and
 rebuild on hierarchy change
• Fixed offsets & 1-level of
 indirection on calls

COMP 412, Fall 2002 22Comp 412 Fall 2005

Multiple Inheritance
The idea
• Allow more flexible sharing of methods & attributes
• Relax the inclusion requirement
 If B is a subclass of A, it need not implement all of A’s methods
• Need a linguistic mechanism for specifying partial inheritance

Problems when C inherits from both A & B
• C’s method table can extend A or B, but not both

— Layout of an object record for C becomes tricky
• Other classes, say D, can inherit from C & B

— Adjustments to offsets become complex
• Both A & B might provide fum() — which is seen in C ?

— C++ produces a “syntax error” when fum() is used

Need a better way
to say “inherit”

COMP 412, Fall 2002 23Comp 412 Fall 2005

Variable Storage with Multiple Inheritance

• Use prefixing of storage

Class Point {
int x, y;

}

Class ColoredThing {
Color c;

}

Class ColorPoint extends
Point, ColoredThing {

}

x

y

x

y

c

self

Does casting work properly?

self

self

c

COMP 412, Fall 2002 24Comp 412 Fall 2005

Multiple Inheritance Example

• Use prefixing of storage & code vectors

Class Point {
int x, y;
void draw();
void d2o();

}

Class CThing {
Color c;
void rev();

}

Class Cpoint
extends

Point, CThing {
void draw()

}

x

y

x

y

c

self

self

self

c

table

table

table

table

draw

d2o

draw

d2o

rev

Point: draw

CPoint:draw

Point: d20

rev CThing: rev

rev

self +=12

COMP 412, Fall 2002 25Comp 412 Fall 2005

Casting with Multiple Inheritance

• Usage as Point:
— No extra action (prefixing does everything)

• Usage as CThing:
— Increment self by 12

• Usage as CPoint:
— Lay out data for CThing at self + 16
— When calling rev

– Call in table points to a trampoline function that adds 12 to
self, then calls rev

– Ensures that rev, which assumes that self points to a
CThing data area, gets the right data

COMP 412, Fall 2002 26Comp 412 Fall 2005

Multiple Inheritance (Example)

Assume that C inherits fee() from A, fie() from B,
 & defines both foe() and fum()

Object record for an instance of C

A vars B vars C vars•

fee() fie() foe() fum()

+ offset

code code code code

This implementation
• Uses a trampoline function
• Optimizes well with inlining
• Overhead only incurred where
 it is really necessary
• Folds inheritance into data
 structure, rather than linkage

Assumes a static class structure
Rebuild it on a change in the
inheritance hierarchy

•

fie() Trampoline function
for call as a ‘C’

COMP 412, Fall 2002 27Comp 412 Fall 2005

Extra Slides Start Here

COMP 412, Fall 2002 28Comp 412 Fall 2005

Multiple Inheritance with Offsets (Example)

Assume that C inherits fee() from A, fie() from B,
 & defines both foe() & fum().

Object record for an instance of C

To make this work, calls must add offset to self
Works, but adds overhead to each method invocation

k

fee()offset (0)

fie()offset (0)

A • B •A vars B vars C varsx

fie()offset (k) foe() fum()offset (0) offset (0)

