
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make

copies of these materials for their personal use.

The Procedure Abstraction

Part II: Symbol Tables, Storage

COMP 412

Fall 2005

COMP 412, Fall 2003 2Comp 412 Fall 2005

Review

From last lecture

The Procedure serves as

• A control abstraction

• A naming abstraction

• An external interface

We covered the control abstraction last lecture.

Today, we will focus on naming.

Access to system services,

libraries, code from others …

COMP 412, Fall 2003 3Comp 412 Fall 2005

The Procedure as a Name Space

Each procedure creates its own name space

• Any name (almost) can be declared locally

• Local names obscure identical non-local names

• Local names cannot be seen outside the procedure

— Nested procedures are “inside” by definition

• We call this set of rules & conventions “lexical scoping”

Examples

• C has global, static, local, and block scopes (Fortran-like)

— Blocks can be nested, procedures cannot

• Scheme has global, procedure-wide, and nested scopes (let)

— Procedure scope (typically) contains formal parameters

COMP 412, Fall 2003 4Comp 412 Fall 2005

The Procedure as a Name Space

Why introduce lexical scoping?

• Provides a compile-time mechanism for binding “free” variables

• Simplifies rules for naming & resolves conflicts

• Lets the programmer introduce “local” names with impunity

How can the compiler keep track of all those names?

The Problem

• At point p, which declaration of x is current?

• At run-time, where is x found?

• As parser goes in & out of scopes, how does it delete x?

The Answer

• Lexically scoped symbol tables (see § 5.7.3)

COMP 412, Fall 2003 5Comp 412 Fall 2005

Do People Use This Stuff ?

C macro from the MSCP compiler

#define fix_inequality(oper, new_opcode) \

 if (value0 < value1) \

 { \

 Unsigned_Int temp = value0; \

 value0 = value1; \

 value1 = temp; \

 opcode_name = new_opcode; \

 temp = oper->arguments[0]; \

 oper->arguments[0] = oper->arguments[1]; \

 oper->arguments[1] = temp; \

 oper->opcode = new_opcode; \

 }

Declares a new name

COMP 412, Fall 2003 6Comp 412 Fall 2005

Lexically-scoped Symbol Tables

The problem

• The compiler needs a distinct record for each declaration

• Nested lexical scopes admit duplicate declarations

The interface

• insert(name, level) – creates record for name at level

• lookup(name, level) – returns pointer or index

• delete(level) – removes all names declared at level

Many implementation schemes have been proposed (see § B.4)

• We’ll stay at the conceptual level

• Hash table implementation is tricky, detailed, & fun

Symbol tables are compile-time structures that the compiler uses to resolve references to names.

We’ll see the corresponding run-time structures that are used to establish addressability later.

§ 5.7 in EaC

COMP 412, Fall 2003 7Comp 412 Fall 2005

Example

procedure p {
int a, b, c
procedure q {

int v, b, x, w
procedure r {

int x, y, z
….

}
procedure s {

int x, a, v
…

}
… r … s

}
… q …

}

B0: {
int a, b, c

B1: {
int v, b, x, w

B2: {
int x, y, z
….

}
B3: {

int x, a, v
…

}
…

}
…

}

COMP 412, Fall 2003 8Comp 412 Fall 2005

Lexically-scoped Symbol Tables

High-level idea

• Create a new table for each scope

• Chain them together for lookup

“Sheaf of tables” implementation

• insert() may need to create table

• it always inserts at current level

• lookup() walks chain of tables &

 returns first occurrence of name

• delete() throws away table for level

 p, if it is top table in the chain

If the compiler must preserve the

table (for, say, the debugger), this
idea is actually practical.

Individual tables can be hash tables.

x

y

z

v

b

x

w

a

b

c

•

r

q

p
...

...

COMP 412, Fall 2003 9Comp 412 Fall 2005

Implementing Lexically Scoped Symbol Tables

Stack organization

Implementation

• insert () creates new level

pointer if needed and

inserts at nextFree

• lookup () searches linearly

from nextFree–1 forward

• delete () sets nextFree to

the equal the start location

of the level deleted.

Advantage

• Uses much less space

Disadvantage

• Lookups can be expensive

a

b

c

v

b

x

w

x

y

z

growth

p (level 0)

q (level 1)

r (level 2)

nextFree

COMP 412, Fall 2003 10Comp 412 Fall 2005

Implementing Lexically Scoped Symbol Tables

Threaded stack organization

Implementation

• insert () puts new entry at the

head of the list for the name

• lookup () goes direct to location

• delete () processes each

element in level being deleted

to remove from head of list

Advantage

• lookup is fast

Disadvantage

• delete takes time proportional

to number of declared variables

in level

•

•

•

•

•

•

h(x)

a

b

c

v

b

x

w

x

y

z

growth

p

q

r

COMP 412, Fall 2003 11Comp 412 Fall 2005

The Procedure as an External Interface

OS needs a way to start the program’s execution

• Programmer needs a way to indicate where it begins

— The “main” procedure in most languages

• When user invokes “grep” at a command line

— OS finds the executable

— OS creates a process and arranges for it to run “grep”

— “grep” is code from the compiler, linked with run-time system

– Starts the run-time environment & calls “main”

– After main, it shuts down run-time environment & returns

• When “grep” needs system services

— It makes a system call, such as fopen()

UNIX/Linux

specific discussion

COMP 412, Fall 2003 12Comp 412 Fall 2005

Where Do All These Variables Go?

Automatic & Local

• Keep them in the procedure activation record or in a register

• Automatic lifetime matches procedure’s lifetime

Static

• Procedure scope storage area affixed with procedure name

— &_p.x

• File scope storage area affixed with file name

• Lifetime is entire execution

Global

• One or more named global data areas

• One per variable, or per file, or per program, …

• Lifetime is entire execution

COMP 412, Fall 2003 13Comp 412 Fall 2005

Placing Run-time Data Structures

Classic Organization

• Code, static, & global data have known size

 Use symbolic labels in the code

• Heap & stack both grow & shrink over time

• This is a virtual address space

• Better utilization if

 stack & heap grow

 toward each other

• Very old result (Knuth)

• Code & data separate or

 interleaved

• Uses address space,

 not allocated memory

C

o

d

e

S G

t l

a & o

t b

i a

c l

S

t

a

c

k

H

e

a

p

Single Logical Address Space

0 high

COMP 412, Fall 2003 14Comp 412 Fall 2005

How Does This Really Work?

The Big Picture

...

Hardware’s view

Compiler’s view

OS’s view

Physical address

space_

virtual address

spaces

0 high

C

o

d

e

S G

t l

a & o

t b

i a

c l

S

t

a

c

k

H

e

a

p

C

o

d

e

S G

t l

a & o

t b

i a

c l

S

t

a

c

k

H

e

a

p

C

o

d

e

S G

t l

a & o

t b

i a

c l

 S

t

a

c

k

H

e

a

p

...
C

o

d

e

S G

t l

a & o

t b

i a

c l

S

t

a

c

k

H

e

a

p

COMP 412, Fall 2003 15Comp 412 Fall 2005

Where Do Local Variables Live?

A Simplistic model

• Allocate a data area for each distinct scope

• One data area per “sheaf” in scoped table

What about recursion?

• Need a data area per invocation (or activation) of a scope

• We call this the scope’s activation record

• The compiler can also store control information there !

More complex scheme

• One activation record (AR) per procedure instance

• All the procedure’s scopes share a single AR (may share space)

• Static relationship between scopes in single procedure

Used this way, “static” means knowable at
compile time (and, therefore, fixed).

