
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make

copies of these materials for their personal use.

The Procedure Abstraction

Part I: Basics

COMP 412

Fall 2005

COMP 412, Fall 2002 2Comp 412 Fall 2005

Procedure Abstraction

• Begins Chapter 6 in EAC

• The compiler must deal with interface between compile time

and run time (static versus dynamic)

— Most of the tricky issues arise in implementing “procedures”

• Issues

— Compile-time versus run-time behavior

— Finding storage for EVERYTHING, and mapping names to

addresses

— Generating code to compute addresses that the compiler

cannot know!

— Interfaces with other programs, other languages, and the OS

— Efficiency of implementation

COMP 412, Fall 2002 3Comp 412 Fall 2005

Where are we?

The latter half of a compiler contains more open problems,
more challenges, and more gray areas than the front half

• This is “compilation,” as opposed to “parsing” or “translation”

• Implementing promised behavior

— Defining and preserving the meaning of the program

• Managing target machine resources

— Registers, memory, issue slots, locality, power, …

— These issues determine the quality of the compiler

Errors

Source
Code

Middle

End

Front

End

Machine
code

Back

End

IR IR

Well understood Engineering

COMP 412, Fall 2002 4Comp 412 Fall 2005

The Procedure & Its Three Abstractions

Compiled Code

Procedure

The compiler produces code for each procedure

The individual code bodies must fit together to form a working

program

COMP 412, Fall 2002 5Comp 412 Fall 2005

The Procedure & Its Three Abstractions

Compiled Code

Naming Environment

Procedure

Each procedure inherits a set of names

Variables, values, procedures, objects, locations, …

Clean slate for new names, “scoping” can hide other names

“Naming” includes

the ability to find

and access the

object in memory

COMP 412, Fall 2002 6Comp 412 Fall 2005

The Procedure & Its Three Abstractions

Compiled Code

Naming Environment
Control History

Procedure

Each procedure inherits a control history

Chain of calls that led to its invocation

Mechanism to return control to caller

Some notion of

parameterization

(ties back to naming)

COMP 412, Fall 2002 7Comp 412 Fall 2005

The Procedure & Its Three Abstractions

Compiled Code

Naming Environment
Control History

Procedure

Each procedure has access to external interfaces

Access by name, with parameters (may include dynamic link & load)

Protection for both sides of the interface

System Services
(allocation, communication,

I/O, control, naming, …)APIs

COMP 412, Fall 2002 8Comp 412 Fall 2005

The Procedure: Three Abstractions

• Control Abstraction

— Well defined entries & exits

— Mechanism to return control to caller

— Some notion of parameterization (usually)

• Clean Name Space

— Clean slate for writing locally visible names

— Local names may obscure identical, non-local names

— Local names cannot be seen outside

• External Interface

— Access is by procedure name & parameters

— Clear protection for both caller & callee

— Invoked procedure can ignore calling context

• Procedures permit a critical separation of concerns

COMP 412, Fall 2002 9Comp 412 Fall 2005

The Procedure (Realist’s View)

Procedures are the key to building large systems

• Requires system-wide compact

— Conventions on memory layout, protection, resource allocation

calling sequences, & error handling

— Must involve architecture (ISA), OS, & compiler

• Provides shared access to system-wide facilities

— Storage management, flow of control, interrupts

— Interface to input/output devices, protection facilities,

timers, synchronization flags, counters, …

• Establishes a private context

— Create private storage for each procedure invocation

— Encapsulate information about control flow & data abstractions

COMP 412, Fall 2002 10Comp 412 Fall 2005

The Procedure (Realist’s View)

Procedures allow us to use separate compilation

• Separate compilation allows us to build non-trivial programs

• Keeps compile times reasonable

• Lets multiple programmers collaborate

• Requires independent procedures

Without separate compilation, we would not build large systems

The procedure linkage convention

• Ensures that each procedure inherits a valid run-time
environment and that the callers environment is restored on
return

— The compiler must generate code to ensure this happens
according to conventions established by the system

COMP 412, Fall 2002 11Comp 412 Fall 2005

The Procedure (More Abstract View)

A procedure is an abstract structure constructed via software

Underlying hardware directly supports little of the
abstraction—it understands bits, bytes, integers, reals, and
addresses, but not:

• Entries and exits

• Interfaces

• Call and return mechanisms
— may be a special instruction to save context at point of call

• Name space

• Nested scopes

All these are established by a carefully-crafted system of
mechanisms provided by compiler, run-time system, linkage
editor and loader, and OS

COMP 412, Fall 2002 12Comp 412 Fall 2005

Run Time versus Compile Time

These concepts are often confusing to the newcomer

• Linkages (and code for procedure body) execute at run time

• Code for the linkage is emitted at compile time

• The linkage is designed long before either of these

This issue (compile time versus run time) confuses students

more than any other issue in Comp 412

• We will emphasize the distinction between them

COMP 412, Fall 2002 13Comp 412 Fall 2005

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The Algol-60 procedure call

• Invoked at a call site, with some set of actual parameters

• Control returns to call site, immediately after invocation

• Most languages allow recursion

int p(a,b,c)

 int a, b, c;

{

 int d;

 d = q(c,b);

 ...

}

int q(x,y)

 int x,y;

{

 if (…)

 x = q(x-1,y);

 return x + y;

}

…

s = p(10,t,u);

…

COMP 412, Fall 2002 14Comp 412 Fall 2005

The Procedure as a Control Abstraction

Implementing procedures with this behavior

• Requires code to save and restore a “return address”

• Must map actual parameters to formal parameters (c x, b y)

• Must create storage for local variables (&, maybe, parameters)

— p needs space for d (&, maybe, a, b, & c)

— where does this space go in recursive invocations?

Compiler emits code that causes all this to happen at run time

int p(a,b,c)

 int a, b, c;

{

 int d;

 d = q(c,b);

 ...

}

int q(x,y)

 int x,y;

{

 if (…)

 x = q(x-1,y);

 return x + y;

}

…

s = p(10,t,u);

…

COMP 412, Fall 2002 15Comp 412 Fall 2005

The Procedure as a Control Abstraction

Implementing procedures with this behavior

• Must preserve p’s state while q executes

— recursion causes the real problem here

• Strategy: Create unique location for each procedure activation

— Can use a “stack” of memory blocks to hold local storage and
return addresses

Compiler emits code that causes all this to happen at run time

int p(a,b,c)

 int a, b, c;

{

 int d;

 d = q(c,b);

 ...

}

int q(x,y)

 int x,y;

{

 if (…)

 x = q(x-1,y);

 return x + y;

}

…

s = p(10,t,u);

…

COMP 412, Fall 2002 16Comp 412 Fall 2005

The Procedure as a Control Abstraction

In essence, the procedure linkage wraps around the unique
code of each procedure to give it a uniform interface

Similar to building a brick wall rather than a rock wall

Compiled Code

Compiled Code

Compiled Code

Compiled Code

Compiled Code

Compiled Code

Compiled Code

Compiled Code

Compiled Code

Compiled Code

Compiled Code

Compiled Code

Compiled Code Compiled Code Compiled Code

Compiled Code Compiled Code Compiled Code

Compiled Code Compiled Code Compiled Code

Compiled Code Compiled Code Compiled Code

