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Procedure Abstraction

• Begins Chapter 6 in EAC

• The compiler must deal with interface between compile time

and run time (static versus dynamic)

— Most of the tricky issues arise in implementing “procedures”

• Issues

— Compile-time versus run-time behavior

— Finding storage for EVERYTHING, and mapping names to

addresses

— Generating code to compute addresses that the compiler

cannot know!

— Interfaces with other programs, other languages, and the OS

— Efficiency of implementation
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Where are we?

The latter half of a compiler contains more open problems,
more challenges, and more gray areas than the front half

• This is “compilation,” as opposed to “parsing” or “translation”

• Implementing promised behavior

— Defining and preserving the meaning of the program

• Managing target machine resources

— Registers, memory, issue slots, locality, power, …

— These issues determine the quality of the compiler
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The Procedure & Its Three Abstractions

Compiled Code

Procedure

The compiler produces code for each procedure

The individual code bodies must fit together to form a working

program
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The Procedure & Its Three Abstractions

Compiled Code

Naming Environment

Procedure

Each procedure inherits a set of names

Variables, values, procedures, objects, locations, …

Clean slate for new names, “scoping” can hide other names

“Naming” includes

the ability to find

and access the

object in memory
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The Procedure & Its Three Abstractions

Compiled Code

Naming Environment
Control History

Procedure

Each procedure inherits a control history

Chain of calls that led to its invocation

Mechanism to return control to caller

Some notion of

parameterization

(ties back to naming)
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The Procedure & Its Three Abstractions

Compiled Code

Naming Environment
Control History

Procedure

Each procedure has access to external interfaces

Access by name, with parameters  (may include dynamic link & load)

Protection for both sides of the interface

System Services
(allocation, communication,

I/O, control, naming, …)APIs
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The Procedure: Three Abstractions

• Control Abstraction

— Well defined entries & exits

— Mechanism to return control to caller

— Some  notion of parameterization (usually)

• Clean Name Space

— Clean slate for writing locally visible names

— Local names may obscure identical, non-local names

— Local names cannot be seen outside

• External Interface

— Access is by procedure name & parameters

— Clear protection for both caller & callee

— Invoked procedure can ignore calling context

• Procedures permit a critical separation of concerns
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The Procedure                             (Realist’s View)

Procedures are the key to building large systems

• Requires system-wide compact

— Conventions on memory layout, protection, resource allocation

calling sequences, & error handling

— Must involve architecture (ISA), OS, & compiler

• Provides shared access to system-wide facilities

— Storage management, flow of control, interrupts

— Interface to input/output devices, protection facilities,

timers, synchronization flags, counters, …

• Establishes a private context

— Create private storage for each procedure invocation

— Encapsulate information about control flow & data abstractions
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The Procedure                             (Realist’s View)

Procedures allow us to use separate compilation

• Separate compilation allows us to build non-trivial programs

• Keeps compile times reasonable

• Lets multiple programmers collaborate

• Requires independent procedures

Without separate compilation, we would not build large systems

The procedure linkage convention

• Ensures that each procedure inherits a valid run-time
environment and that the callers environment is restored on
return

— The compiler must generate code to ensure this happens
according to conventions established by the system
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The Procedure                     (More Abstract View)

A procedure is an abstract structure constructed via software

Underlying hardware directly supports little of the
abstraction—it understands bits, bytes, integers, reals, and
addresses, but not:

• Entries and exits

• Interfaces

• Call and return mechanisms
— may be a special instruction to save context at point of call

• Name space

• Nested scopes

All these are established by a carefully-crafted system of
mechanisms provided by compiler, run-time system, linkage
editor and loader, and OS
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Run Time versus Compile Time

These concepts are often confusing to the newcomer

• Linkages (and code for procedure body) execute at run time

• Code for the linkage is emitted at compile time

• The linkage is designed long before either of these

This issue (compile time versus run time) confuses students

more than any other issue in Comp 412

• We will emphasize the distinction between them
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The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The Algol-60 procedure call

• Invoked at a call site, with some set of actual parameters

• Control returns to call site, immediately after invocation

• Most languages allow recursion

int p(a,b,c)

    int a, b, c;

{

   int   d;

   d = q(c,b);

   ...

}

int q(x,y)

    int x,y;

{

    if ( … )

       x = q(x-1,y);

    return x + y;

}

…

s = p(10,t,u);

…
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The Procedure as a Control Abstraction

Implementing procedures with this behavior

• Requires code to save and restore a “return address”

• Must map actual parameters to formal parameters     (c x, b y)

• Must create storage for local variables  (&, maybe, parameters)

— p needs space for d  (&, maybe, a, b, & c)

— where does this space go in recursive invocations?

Compiler emits code that causes all this to happen at run time

int p(a,b,c)

    int a, b, c;

{

   int   d;

   d = q(c,b);

   ...

}

int q(x,y)

    int x,y;

{

    if ( … )

       x = q(x-1,y);

    return x + y;

}

…

s = p(10,t,u);

…
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The Procedure as a Control Abstraction

Implementing procedures with this behavior

• Must preserve p’s state while q executes

— recursion causes the real problem here

• Strategy: Create unique location for each procedure activation

— Can use a “stack” of memory blocks to hold local storage and
return addresses

Compiler emits code that causes all this to happen at run time

int p(a,b,c)

    int a, b, c;

{

   int   d;

   d = q(c,b);

   ...

}

int q(x,y)

    int x,y;

{

    if ( … )

       x = q(x-1,y);

    return x + y;

}

…

s = p(10,t,u);

…
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The Procedure as a Control Abstraction

In essence, the procedure linkage wraps around the unique
code of each procedure to give it a uniform interface

Similar to building a brick wall rather than a rock wall
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