Q

The Procedure Abstraction
Part I: Basics

COMP 412
Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

Procedure Abstracti > %
roceaure sTractrtion
@

* Begins Chapter 6 in EAC
* The compiler must deal with interface between compile time
and run time (static versus dynamic)
— Most of the tricky issues arise in implementing "procedures”

* Issues
— Compile-time versus run-time behavior

— Finding storage for EVERYTHING, and mapping hames to
addresses

— Generating code to compute addresses that the compiler
cannot know!

— Interfaces with other programs, other languages, and the OS
— Efficiency of implementation

Comp 412 Fall 2005

Where are we?

T Well et LG ' &:k

" Well understood
Source | Front
Code End

Middle
End

Engineering =
IR Back Machine
—> - >
End code
» Errors |

The latter half of a compiler contains more open problems,
more challenges, and more gray areas than the front half

* This is "compilation,” as opposed to "parsing” or "translation’

* Implementing promised behavior

!

— Defining and preserving the meaning of the program

e Managing target machine resources
ging g

— Registers, memory, issue slots, locality, power, ...

— These issues determine the quality of the compiler

Comp 412 Fall 2005

SRS

The Procedure & Its Three Abstractions \§

The compiler produces code for each procedure

Compiled Code

Procedure

The individual code bodies must fit together to form a working
program

Comp 412 Fall 2005

BB
The Procedure & Its Three Abstractions '§ \'}
Q)

Naming Environment

]

Compiled Code

p
"Naming” includes

the ability to find

and access the
object in memory
-

Each procedure inherits a set of names

Procedure

= Variables, values, procedures, objects, locations, ...
= Clean slate for new names, "scoping” can hide other names

Comp 412 Fall 2005

The Procedure & Its Three Abstractions

: . Control Hist
Naming Environment on mlH' ory

]

Compiled Code

Procedure

Each procedure inherits a control history

= Chain of calls that led to its invocation Some notion of
parameterization

= Mechanism to return control to caller . .
(ties back to naming)

Comp 412 Fall 2005

The Procedure & Its Three Abstractions

: . Control Hist
Naming Environment on mlH' ory

]

System Services
(allocation, communication,

Compiled Code
APIs I/0, control, naming, ...)

Procedure

Each procedure has access to external interfaces
— Access by name, with parameters (may include dynamic link & load)
— Protection for both sides of the interface

Comp 412 Fall 2005

The Procedure: Three Abstractions \
&\
e Control Abstraction =

— Well defined entries & exits
— Mechanism to return control to caller
— Some notion of parameterization (usually)

* Clean Name Space
— Clean slate for writing locally visible names
— Local names may obscure identical, non-local names
— Local names cannot be seen outside

* External Interface
— Access is by procedure name & parameters
— Clear protection for both caller & callee
— Invoked procedure can ignore calling context

* Procedures permit a critical separation of concerns

Comp 412 Fall 2005

L
The Procedure (Realist's View) QX

e

Procedures are the key to building large systems
* Requires system-wide compact

— Conventions on memory layout, protection, resource allocation
calling sequences, & error handling

— Must involve architecture (ISA), 0S, & compiler
* Provides shared access to system-wide facilities
— Storage management, flow of control, interrupts

— Interface to input/output devices, protection facilities,
timers, synchronization flags, counters, ...

* Establishes a private context
— Create private storage for each procedure invocation
— Encapsulate information about control flow & data abstractions

Comp 412 Fall 2005

A £
The Procedure (Realist's View) QX

Procedures allow us to use separate compilation

* Separate compilation allows us to build non-trivial programs
* Keeps compile times reasonable

* Lets multiple programmers collaborate

* Requires independent procedures

Without separate compilation, we would not build large systems

The procedure linkage convention

* Ensures that each procedure inherits a valid run-time
environment and that the callers environment is restored on
return

— The compiler must generate code to ensure this happens
according to conventions established by the system

Comp 412 Fall 2005 10

SRS

The Procedure (More Abstract View) %
B

A procedure is an abstract structure constructed via sof tware

Underlying hardware directly supports little of the

abstraction—it understands bits, bytes, integers, reals, and
addresses, but not:

Entries and exits
Interfaces

Call and return mechanisms

— may be a special instruction to save context at point of call
Name space
Nested scopes

All these are established by a carefully-crafted system of

Comp 412 Fall 2005

mechanisms provided by compiler, run-time system, linkage
editor and loader, and OS

11

Run Time versus Compile Time \k

These concepts are often confusing to the newcomer

* Linkages (and code for procedure body) execute at run time
* Code for the linkage is emitted at compile time

* The linkage is designed long before either of these

This issue (compile time versus run time) confuses students
more than any other issue in Comp 412

* We will emphasize the distinction between them

Comp 412 Fall 2005 12

The Procedure as a Control Abstraction \%

Procedures have well-defined control-flow

The Algol-60 procedure call
* Invoked at a call site, with some set of actual parameters
* Control returns to call site, immediately after invocation

»int p(a,b,c)
inta, b, c; »int q(x,y)
{ int x,y;
int d; {

s =p(10,t,u); d = q(c,b); if(...) 4
x=q(x-1,y);
return x +vy,;

}

* Most languages allow recursion

Comp 412 Fall 2005 13

. 55
The Procedure as a Control Abstraction \k

Implementing procedures with this behavior
* Requires code to save and restore a "return address”
* Must map actual parameters to formal parameters (c—x, b—y)
* Must create storage for local variables (&, maybe, parameters)
— pneeds space for d (&, maybe, a, b, & ¢)
— where does this space go in recursive invocations?

»int p(a,b,c)
inta, b, c; »int q(x,y)
{ int x,y;
int d; {

s =p(10,t,u); d = q(c,b); if(...) 4
X = q(x-1,y);
return x +vy,;

Compiler emits code that causes all this to happen at run time

}

Comp 412 Fall 2005 14

The Procedure as a Control Abstraction \%

Implementing procedures with this behavior
* Must preserve p's state while g executes
— recursion causes the real problem here
* Strategy. Create unique location for each procedure activation

— Can use a "stack” of memory blocks to hold local storage and
return addresses

»int p(a,b,c)
inta, b, c; »int q(x,y)
{ int x,y;
int d; {

s =p(10,t,u); d = q(c,b); if(...) 4
X = q(x-1,y);
return x +vy,;

Compiler emits code that causes all this to happen at run time

}

Comp 412 Fall 2005 15

The Procedure as a Control Abstraction

7

In essence, the procedure linkage wraps around the unique
code of each procedure to give it a uniform interface

Compiled Code Compiled Code Compiled Code
Compiled Code Compiled Code Commpiled Code

Compiled Code Compiled Code Compiled Code
Compiled Code Compiled Code Compiled Code

Similar to building a brick wall rather than a rock wall

16

Comp 412 Fall 2005

