
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

Intermediate Representations

COMP 412
Fall 2005

COMP 412, Fall 2003 2Comp 412 Fall 2004

Intermediate Representations

• Front end - produces an intermediate representation (IR)
• Middle end - transforms the IR into an equivalent IR that

runs more efficiently
• Back end - transforms the IR into native code

• IR encodes the compiler’s knowledge of the program
• Middle end usually consists of several passes

Front
End

Middle
End

Back
End

IR IRSource
Code

Target
Code

COMP 412, Fall 2003 3Comp 412 Fall 2004

Intermediate Representations

• Decisions in IR design affect the speed and efficiency
 of the compiler

• Some important IR properties
— Ease of generation
— Ease of manipulation
— Procedure size
— Freedom of expression
— Level of abstraction

• The importance of different properties varies between
compilers

— Selecting an appropriate IR for a compiler is critical

COMP 412, Fall 2003 4Comp 412 Fall 2004

Types of Intermediate Representations
Three major categories
• Structural

— Graphically oriented
— Heavily used in source-to-source translators
— Tend to be large

• Linear
— Pseudo-code for an abstract machine
— Level of abstraction varies
— Simple, compact data structures
— Easier to rearrange

• Hybrid
— Combination of graphs and linear code
— Example: control-flow graph

Examples:
Trees, DAGs

Examples:
3 address code
Stack machine code

Example:
Control-flow graph

COMP 412, Fall 2003 5Comp 412 Fall 2004

Level of Abstraction
• The level of detail exposed in an IR influences the

profitability and feasibility of different optimizations.
• Two different representations of an array reference:

subscript

A i j

loadI 1 => r1
sub rj, r1 => r2
loadI 10 => r3
mult r2, r3 => r4
sub ri, r1 => r5
add r4, r5 => r6
loadI @A => r7
add r7, r6 => r8
load r8 => rAij

High level AST:
Good for memory
disambiguation Low level linear code:

Good for address calculation

COMP 412, Fall 2003 6Comp 412 Fall 2004

Level of Abstraction
• Structural IRs are usually considered high-level
• Linear IRs are usually considered low-level
• Not necessarily true:

+

*

10

j 1

- j 1

-

+

@A

load

Low level AST loadArray A,i,j

High level linear code

COMP 412, Fall 2003 7Comp 412 Fall 2004

Abstract Syntax Tree

An abstract syntax tree is the procedure’s parse tree with
 the nodes for most non-terminal nodes removed

 x - 2 * y
• Can use linearized form of the tree

— Easier to manipulate than pointers
x 2 y * - in postfix form
- * 2 y x in prefix form

• S-expressions are (essentially) ASTs

-

x

2 y

*

COMP 412, Fall 2003 8Comp 412 Fall 2004

Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique
 node for each value

• Makes sharing explicit
• Encodes redundancy

x

2 y

*

-

←

z /

←

w

z ← x - 2 * y
w ← x / 2

Same expression twice means
that the compiler might arrange
to evaluate it just once!

COMP 412, Fall 2003 9Comp 412 Fall 2004

Stack Machine Code
Originally used for stack-based computers, now Java
• Example:

x - 2 * y becomes

Advantages
• Compact form
• Introduced names are implicit, not explicit
• Simple to generate and execute code

Useful where code is transmitted
over slow communication links (the net)

push x
push 2
push y
multiply
subtract

Implicit names take up
no space, where explicit
ones do!

COMP 412, Fall 2003 10Comp 412 Fall 2004

Three Address Code

Several different representations of three address code
• In general, three address code has statements of the form:

x ← y op z
With 1 operator (op) and, at most, 3 names (x, y, & z)

Example:
z ← x - 2 * y becomes

Advantages:
• Resembles many real machines
• Introduces a new set of names
• Compact form

t ← 2 * y
z ← x - t

*

COMP 412, Fall 2003 11Comp 412 Fall 2004

Three Address Code: Quadruples
Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

345sub
X4load

123mult
22loadi

Y1load
load r1, y
loadI r2, 2
mult r3, r2, r1
load r4, x
sub r5, r4, r3

RISC assembly code Quadruples

The original FORTRAN

compiler used “quads”

COMP 412, Fall 2003 12Comp 412 Fall 2004

Three Address Code: Triples

• Index used as implicit name
• 25% less space consumed than quads
• Much harder to reorder

(3)(4)sub
xload

(2)(1)mult
2loadI
yload(1)

(2)

(3)

(4)

(5)

Implicit names take no space!

COMP 412, Fall 2003 13Comp 412 Fall 2004

Three Address Code: Indirect Triples

• List first triple in each statement
• Implicit name space
• Uses more space than triples, but easier to reorder

• Major tradeoff between quads and triples is compactness
versus ease of manipulation

— In the past compile-time space was critical
— Today, speed may be more important

(102)(103)sub
xload

(101)(100)mult
2loadI
yload(100)

(101)

(102)

(103)

(104)

(100)

(105)

COMP 412, Fall 2003 14Comp 412 Fall 2004

Two Address Code
• Allows statements of the form

x ← x op y
Has 1 operator (op) and, at most, 2 names (x and y)

Example:
 z ← x - 2 * y becomes

• Can be very compact

Problems
• Machines no longer rely on destructive operations
• Difficult name space

— Destructive operations make reuse hard
— Good model for machines with destructive ops (PDP-11)

t1 ← 2
t2 ← load y
t2 ← t2 * t1
z ← load x
z ← z - t2

COMP 412, Fall 2003 15Comp 412 Fall 2004

Control-flow Graph

Models the transfer of control in the procedure
• Nodes in the graph are basic blocks

— Can be represented with quads or any other linear
representation

• Edges in the graph represent control flow

Example if (x = y)

a ← 2
b ← 5

a ← 3
b ← 4

c ← a * b

Basic blocks —
Maximal length
sequences of
straight-line code

COMP 412, Fall 2003 16Comp 412 Fall 2004

Static Single Assignment Form
• The main idea: each name defined exactly once
• Introduce φ-functions to make it work

Strengths of SSA-form
• Sharper analysis
• φ-functions give hints about placement
• (sometimes) faster algorithms

 Original

x ← …
y ← …
while (x < k)
 x ← x + 1
 y ← y + x

SSA-form

x0 ← …
y0 ← …
if (x0 >= k) goto next

loop: x1 ← φ(x0,x2)
y1 ← φ(y0,y2)

 x2 ← x1 + 1
 y2 ← y1 + x2

if (x2 < k) goto loop
next: …

COMP 412, Fall 2003 17Comp 412 Fall 2004

Using Multiple Representations

• Repeatedly lower the level of the intermediate
representation

— Each intermediate representation is suited towards certain
optimizations

• Example: the Open64 compiler
— WHIRL intermediate format

– Consists of 5 different IRs that are progressively more
detailed and less abstract

Front
End

Middle
End

Back
End

IR 1 IR 3Source
Code

Target
Code

Middle
End

IR 2

COMP 412, Fall 2003 18Comp 412 Fall 2004

Memory Models

Two major models
• Register-to-register model

— Keep all values that can legally be stored in a register in registers
— Ignore machine limitations on number of registers
— Compiler back-end must insert loads and stores

• Memory-to-memory model
— Keep all values in memory
— Only promote values to registers directly before they are used
— Compiler back-end can remove loads and stores

• Compilers for RISC machines usually use register-to-register
— Reflects programming model
— Easier to determine when registers are used

COMP 412, Fall 2003 19Comp 412 Fall 2004

The Rest of the Story…

Representing the code is only part of an IR

There are other necessary components
• Symbol table (already discussed)
• Constant table

— Representation, type
— Storage class, offset

• Storage map
— Overall storage layout
— Overlap information
— Virtual register assignments

