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Intermediate Representations

• Front end - produces an intermediate representation (IR)
• Middle end - transforms the IR into an equivalent IR that

runs more efficiently
• Back end - transforms the IR into native code

• IR encodes the compiler’s knowledge of the program
• Middle end usually consists of several passes
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Intermediate Representations

• Decisions in IR design affect the speed and efficiency
     of the compiler

• Some important IR properties
— Ease of generation
— Ease of manipulation
— Procedure size
— Freedom of expression
— Level of abstraction

• The importance of different properties varies between
compilers

— Selecting an appropriate IR for a compiler is critical
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Types of Intermediate Representations
Three major categories
• Structural

— Graphically oriented
— Heavily used in source-to-source translators
— Tend to be large

• Linear
— Pseudo-code for an abstract machine
— Level of abstraction varies
— Simple, compact data structures
— Easier to rearrange

• Hybrid
— Combination of graphs and linear code
— Example: control-flow graph

Examples:
Trees, DAGs 

Examples:
3 address code
Stack machine code 

Example:
Control-flow graph 
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Level of Abstraction
• The level of detail exposed in an IR influences the

profitability and feasibility of different optimizations.
• Two different representations of an array reference:

subscript

A i j

loadI 1      => r1
sub   rj, r1 => r2
loadI 10     => r3
mult  r2, r3 => r4
sub   ri, r1 => r5
add   r4, r5 => r6
loadI @A     => r7
add   r7, r6 => r8
load  r8     => rAij

High level AST:
Good for memory 
disambiguation Low level linear code:

Good for address calculation
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Level of Abstraction
• Structural IRs are usually considered high-level
• Linear IRs are usually considered low-level
• Not necessarily true:
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load

Low level AST loadArray A,i,j

High level linear code 
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Abstract Syntax Tree

An abstract syntax tree is the procedure’s parse tree with
     the nodes for most non-terminal nodes removed

                    x - 2 * y
• Can use linearized form of the tree

— Easier to manipulate than pointers
x 2 y * -  in postfix form
- * 2 y x in prefix form

• S-expressions are (essentially) ASTs

-

x

2 y

*
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Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique
    node for each value

• Makes sharing explicit
• Encodes redundancy

x

2 y

*

-

←

z /

←

w

z ← x - 2 * y
w ← x  /  2

Same expression twice means
that the compiler might arrange
to evaluate it just once!
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Stack Machine Code
Originally used for stack-based computers, now Java
• Example:

x - 2 * y  becomes

Advantages
• Compact form
• Introduced names are implicit, not explicit
• Simple to generate and execute code

Useful where code is transmitted
over slow communication links  (the net )

push x
push 2
push y
multiply
subtract

Implicit names take up
no space, where explicit
ones do!
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Three Address Code

Several different representations of three address code
• In general, three address code has statements of the form:

x ← y op z
With 1 operator (op ) and, at most, 3 names (x, y, & z)

Example:
z ← x - 2 * y becomes

Advantages:
• Resembles many real machines
• Introduces a new set of names
• Compact form

t ← 2 * y
z ← x - t

*
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Three Address Code: Quadruples
Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

345sub
X4load

123mult
22loadi

Y1load
load  r1, y
loadI r2, 2
mult  r3, r2, r1
load  r4, x
sub   r5, r4, r3

RISC assembly code Quadruples

The original FORTRAN

compiler used “quads”



COMP 412,  Fall 2003 12Comp 412 Fall 2004

Three Address Code: Triples

• Index used as implicit name
• 25% less space consumed than quads
• Much harder to reorder

(3)(4)sub
xload

(2)(1)mult
2loadI
yload(1)

(2)

(3)

(4)

(5)

Implicit names take no space!
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Three Address Code: Indirect Triples

• List first triple in each statement
• Implicit name space
• Uses more space than triples, but easier to reorder

• Major tradeoff between quads and triples is compactness
versus ease of manipulation

— In the past compile-time space was critical
— Today, speed may be more important

(102)(103)sub
xload

(101)(100)mult
2loadI
yload(100)

(101)

(102)

(103)

(104)

(100)

(105)
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Two Address Code
• Allows statements of the form

x ← x op y
Has 1 operator (op ) and, at most, 2 names (x and y)

Example:
     z ← x - 2 * y    becomes

• Can be very compact

Problems
• Machines no longer rely on destructive operations
• Difficult name space

— Destructive operations make reuse hard
— Good model for machines with destructive ops (PDP-11)

t1 ← 2
t2 ← load y
t2 ← t2 * t1
z  ← load x
z  ← z - t2
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Control-flow Graph

Models the transfer of control in the procedure
• Nodes in the graph are basic blocks

— Can be represented with quads or any other linear
representation

• Edges in the graph represent control flow

Example if (x = y)

a ← 2
b ← 5

a ← 3
b ← 4

c ← a * b

Basic blocks —
Maximal length
sequences of
straight-line code
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Static Single Assignment Form
• The main idea:  each name defined exactly once
• Introduce φ-functions to make it work

Strengths of SSA-form
• Sharper analysis
• φ-functions give hints about placement
• (sometimes) faster algorithms

        Original

x ← …
y ← …
while (x < k)
   x ← x + 1
   y ← y + x

SSA-form

x0 ← …
y0 ← …
if (x0 >= k) goto next

loop: x1 ← φ(x0,x2)
y1 ← φ(y0,y2)

       x2 ← x1 + 1
       y2 ← y1 + x2

if (x2 < k) goto loop
next:     …
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Using Multiple Representations

• Repeatedly lower the level of the intermediate
representation

— Each intermediate representation is suited towards certain
optimizations

• Example: the Open64 compiler
— WHIRL intermediate format

– Consists of 5 different IRs that are progressively more
detailed and less abstract

Front
End

Middle
End

Back
End

IR 1 IR 3Source
Code

Target
Code

Middle
End

IR 2
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Memory Models

Two major models
• Register-to-register model

— Keep all values that can legally be stored in a register in registers
— Ignore machine limitations on number of registers
— Compiler back-end must insert loads and stores

• Memory-to-memory model
— Keep all values in memory
— Only promote values to registers directly before they are used
— Compiler back-end can remove loads and stores

• Compilers for RISC machines usually use register-to-register
— Reflects programming model
— Easier to determine when registers are used
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The Rest of the Story…

Representing the code is only part of an IR

There are other necessary components
• Symbol table (already discussed)
• Constant table

— Representation, type
— Storage class, offset

• Storage map
— Overall storage layout
— Overlap information
— Virtual register assignments


