
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

Context-sensitive Analysis II:
From Attribute grammars to

ad-hoc syntax-directed translation

COMP 412
Fall 2005

COMP 412, Fall 2002 2Comp 412 Fall 2005

An Extended Attribute Grammar Example

Grammar for a basic block (§ 4.3.3)

Block0 Block1 Assign
 Assign

Assign Ident = Expr ;

Expr0
 Expr1 + Term

 Expr1 – Term

 Term

Term0
 Term1 * Factor

 Term1 / Factor

 Factor

Factor (Expr)

 Number

 Identifier

Let’s estimate cycle counts

• Each operation has a COST

• Add them, bottom up

• Assume a load per value

• Assume no reuse

Simple problem for an AG

Hey, this looks useful !

COMP 412, Fall 2002 3Comp 412 Fall 2005

An Extended Example (continued)

Block0 Block1 Assign Block0.cost Block1.cost +

 Assign.cost
Assign Block0.cost Assign.cost

Assign Ident = Expr ; Assign.cost COST(store) +
 Expr.cost

Expr0 Expr1 + Term Expr0.cost Expr1.cost +
 COST(add) + Term.cost

Expr1 – Term Expr0.cost Expr1.cost +
 COST(add) + Term.cost

Term Expr0.cost Term.cost

Term0 Term1 * Factor Term0.cost Term1.cost +

 COST(mult) + Factor.cost
Term1 / Factor Term0.cost Term1.cost +

 COST(div) + Factor.cost
Factor Term0.cost Factor.cost

Factor (Expr) Factor.cost Expr.cost

Number Factor.cost COST(loadI)

Identifier Factor.cost COST(load)

These are
all
synthesized
attributes !

Values flow
from rhs to
lhs in prod’ns

COMP 412, Fall 2002 4Comp 412 Fall 2005

An Extended Example (continued)

Properties of the example grammar

• All attributes are synthesized S-attributed grammar

• Rules can be evaluated bottom-up in a single pass

— Good fit to bottom-up, shift/reduce parser

• Easily understood solution

• Seems to fit the problem well

What about an improvement?

• Values are loaded only once per block (not at each use)

• Need to track which values have been already loaded

COMP 412, Fall 2002 5Comp 412 Fall 2005

Adding load tracking

• Need sets Before and After for each production

• Must be initialized, updated, and passed around the tree

A Better Execution Model

Factor (Expr) Factor.cost Expr.cost ;

Expr.Before Factor.Before ;

Factor.After Expr.After

 Number Factor.cost COST(loadi) ;

Factor.After Factor.Before

 Identifier If (Identifier.name Factor.Before)

 then
 Factor.cost COST(load);

 Factor.After Factor.Before

 { Identifier.name }

 else
 Factor.cost 0

 Factor.After Factor.Before

This looks more complex!

COMP 412, Fall 2002 6Comp 412 Fall 2005

• Load tracking adds complexity

• But, most of it is in the “copy rules”

• Every production needs rules to copy Before & After

A sample production

These copy rules multiply rapidly

Each creates an instance of the set

Lots of work, lots of space, lots of rules to write

A Better Execution Model

Expr Expr Term Expr cost Expr cost
 COST add Term cost ;
Expr Before Expr Before ;
Term Before Expr After;
Expr After Term After

COMP 412, Fall 2002 7Comp 412 Fall 2005

What about accounting for finite register sets?

• Before & After must be of limited size

• Adds complexity to Factor Identifier

• Requires more complex initialization

Jump from tracking loads to tracking registers is small

• Copy rules are already in place

• Some local code to perform the allocation

An Even Better Model

COMP 412, Fall 2002 8Comp 412 Fall 2005

And Its Extensions

Tracking loads

• Introduced Before and After sets to record loads

• Added 2 copy rules per production

— Serialized evaluation into execution order

• Made the whole attribute grammar large & cumbersome

Finite register set

• Complicated one production (Factor Identifier)

• Needed a little fancier initialization

• Changes were quite limited

Why is one change hard and the other easy?

COMP 412, Fall 2002 9Comp 412 Fall 2005

The Moral of the Story

• Non-local computation needed lots of supporting rules

• Complex local computation was relatively easy

The Problems

• Copy rules increase cognitive overhead

• Copy rules increase space requirements

— Need copies of attributes

— Can use pointers, for even more cognitive overhead

• Result is an attributed tree (somewhat subtle points)

— Must build the parse tree

— Either search tree for answers or copy them to the root

COMP 412, Fall 2002 10Comp 412 Fall 2005

Addressing the Problem

If you gave this problem to a chief programmer in COMP 314

• Introduce a central repository for facts

• Table of names

— Field in table for loaded/not loaded state

• Avoids all the copy rules, allocation & storage headaches

• All inter-assignment attribute flow is through table

— Clean, efficient implementation

— Good techniques for implementing the table (hashing, § B.3)

— When it is done, information is in the table !

— Cures most of the problems

• Unfortunately, this design violates the functional paradigm

— Do we care?

COMP 412, Fall 2002 11Comp 412 Fall 2005

The Realist’s Alternative

Ad-hoc syntax-directed translation

• Associate a snippet of code with each production

• At each reduction, the corresponding snippet runs

• Allowing arbitrary code provides complete flexibility

— Includes ability to do tasteless & bad things

To make this work

• Need names for attributes of each symbol on lhs & rhs
— Typically, one attribute passed through parser + arbitrary code

(structures, globals, statics, …)

— Yacc introduced $$, $1, $2, … $n, left to right

• Need an evaluation scheme
— Fits nicely into LR(1) parsing algorithm

COMP 412, Fall 2002 12Comp 412 Fall 2005

Reworking the Example (with load tracking)

Block0 Block1 Assign

Assign

Assign Ident = Expr ; cost cost + COST(store);

Expr0 Expr1 + Term cost cost + COST(add);

Expr1 – Term cost cost + COST(sub);

Term

Term0 Term1 * Factor cost cost + COST(mult);

Term1 / Factor cost cost + COST(div);

Factor

Factor (Expr)

Number cost cost + COST(loadi);

Identifier { i hash(Identifier);

 if (Table[i].loaded = false)

 then {

 cost cost + COST(load);

 Table[i].loaded true;

 }

}

This looks
cleaner &

simpler than
the AG sol’n !

One missing
detail: initializing

cost

COMP 412, Fall 2002 13Comp 412 Fall 2005

Reworking the Example (with load tracking)

Start Init Block

Init cost 0;

Block0 Block1 Assign

Assign

Assign Ident = Expr ; cost cost + COST(store);

 … and so on as in the previous version of the example …

• Before parser can reach Block, it must reduce Init

• Reduction by Init sets cost to zero

This is an example of splitting a production to create a reduction
in the middle — for the sole purpose of hanging an action routine
there!

COMP 412, Fall 2002 14Comp 412 Fall 2005

Reworking the Example (with load tracking)

Block0 Block1 Assign $$ $1 + $2 ;

Assign $$ $1 ;
Assign Ident = Expr ; $$ COST(store) + $3;

Expr0 Expr1 + Term $$ $1 + COST(add) + $3;

Expr1 – Term $$ $1 + COST(sub) + $3;
Term $$ $1;

Term0 Term1 * Factor $$ $1 + COST(mult) + $3;

Term1 / Factor $$ $1 + COST(div) + $3;
Factor $$ $1;

Factor (Expr) $$ $2;

Number $$ COST(loadi);
Identifier { i hash(Identifier);

 if (Table[i].loaded = false)
 then {
 $$ COST(load);
 Table[i].loaded true;
 }
 else $$ 0
}

This version
passes the
values through
attributes. It
avoids the
need for
initializing
“cost”

COMP 412, Fall 2002 15Comp 412 Fall 2005

Example — Building an Abstract Syntax Tree

• Assume constructors for each node

• Assume stack holds pointers to nodes

• Assume yacc syntax

Goal Expr $$ = $1;

Expr Expr + Term $$ = MakeAddNode($1,$3);

| Expr – Term $$ = MakeSubNode($1,$3);

| Term $$ = $1;

Term Term * Factor $$ = MakeMulNode($1,$3);

| Term / Factor $$ = MakeDivNode($1,$3);

| Factor $$ = $1;

Factor (Expr) $$ = $2;

| number $$ = MakeNumNode(token);

| id $$ = MakeIdNode(token);

COMP 412, Fall 2002 16Comp 412 Fall 2005

Reality

Most parsers are based on this ad-hoc style of context-
sensitive analysis

Advantages

• Addresses the shortcomings of the AG paradigm

• Efficient, flexible

Disadvantages

• Must write the code with little assistance

• Programmer deals directly with the details

Most parser generators support a yacc-like notation

COMP 412, Fall 2002 17Comp 412 Fall 2005

Typical Uses

• Building a symbol table
— Enter declaration information as processed

— At end of declaration syntax, do some post processing

— Use table to check errors as parsing progresses

• Simple error checking/type checking
— Define before use lookup on reference

— Dimension, type, ... check as encountered

— Type conformability of expression bottom-up walk

— Procedure interfaces are harder

– Build a representation for parameter list & types

– Create list of sites to check

– Check offline, or handle the cases for arbitrary orderings

assumes table
is global

COMP 412, Fall 2002 18Comp 412 Fall 2005

Is This Really “Ad-hoc” ?

Relationship between practice and attribute grammars

Similarities

• Both rules & actions associated with productions

• Application order determined by tools, not author

• (Somewhat) abstract names for symbols

Differences

• Actions applied as a unit; not true for AG rules

• Anything goes in ad-hoc actions; AG rules are functional

• AG rules are higher level than ad-hoc actions

COMP 412, Fall 2002 19Comp 412 Fall 2005

Limitations

• Forced to evaluate in a given order: postorder

— Left to right only

— Bottom up only

• Implications

— Declarations before uses

— Context information cannot be passed down

– How do you know what rule you are called from within?

– Example: cannot pass bit position from right down

— Could you use globals?

– Requires initialization & some re-thinking of the solution

— Can we rewrite it in a form that is better for the ad-hoc sol’n

COMP 412, Fall 2002 20Comp 412 Fall 2005

Limitations

Can often rewrite the problem to fit S-attributed model

$$ 1Sign +

$$ –1 | -

$$ 1 | 1

$$ 0Bit 0

$$ $1 | Bit

$$ 2 $1 + $2List0 List1 Bit

$$ $1 x $2Number Sign List

We picked the original
attribution rules to
highlight features of
attribute grammars,
rather than to show
you the most efficient
way to compute the
answer!

The key step

Of course, you can rewrite the AG in
this same S-attributed style

COMP 412, Fall 2002 21Comp 412 Fall 2005

Making Ad-hoc SDT Work

How do we fit this into an LR(1) parser?

• Need a place to store the attributes

— Stash them in the stack, along with state and symbol

— Push three items each time, pop 3 x | | symbols

• Need a naming scheme to access them

— $n translates into stack location (top - 3n)

• Need to sequence rule applications

— On every reduce action, perform the action rule

— Add a giant case statement to the parser

Adds a rule evaluation to each reduction

— Usually the code snippets are relatively cheap

COMP 412, Fall 2002 22Comp 412 Fall 2005

Making Ad-hoc SDT Work

What about a rule that must work in mid-production?

• Can transform the grammar

— Split it into two parts at the point where rule must go

— Apply the rule on reduction to the appropriate part

• Can also handle reductions on shift actions

— Add a production to create a reduction

– Was: fee fum

– Make it: fee fie fum

 and tie the action to this new reduction

Together, these let us apply rule at any point in the parse

COMP 412, Fall 2002 23Comp 412 Fall 2005

Alternative Strategy

Use SDT to build an abstract syntax tree & do complex work
in a tree walk

• Use tree walk routines

• Use “visitor” design pattern to add functionality

TreeNodeVisitor

VisitAssignment(AssignmentNode)

VisitVariableRef(VariableRefNode)

TypeCheckVisitor

VisitAssignment(AssignmentNode)

VisitVariableRef(VariableRefNode)

AnalysisVisitor

VisitAssignment(AssignmentNode)

VisitVariableRef(VariableRefNode)

COMP 412, Fall 2002 24Comp 412 Fall 2005

Visitor Treewalk I

TreeNode

Accept(NodeVisitor)

AssignmentNode

Accept(NodeVisitor v)

v.VisitAssignment(this)

VariableRefNode

Accept(NodeVisitor v)

v.VisitVariableRef(this)

Code parallels the tree’s structure:

• Separates treewalk code from node handling code

• Facilitates change in processing without change to tree
structure

COMP 412, Fall 2002 25Comp 412 Fall 2005

Visitor Treewalk II

VisitAssignment(aNodePtr)

// preprocess assignment

(aNodePtr->rhs)->Accept(this);

// postprocess rhs info;

(aNodePtr->lhs)->Accept(this);

// postprocess assignment;

To start the process:

AnalysisVisitor a; treeRoot->Accept(a);

Refers to current visitor!

COMP 412, Fall 2002 26Comp 412 Fall 2005

Summary: Strategies for C-S Analysis

• Attribute Grammars

— Pros: Formal, powerful, can deal with propagation strategies

— Cons: Too many copy rules, no global tables, works on parse tree

• Postorder Code Execution

— Pros: Simple and functional, can be specified in grammar (Yacc)
but does not require parse tree

— Cons: Rigid evaluation order, no context inheritance

• Generalized Tree Walk

— Pros: Full power and generality, operates on abstract syntax tree
(using Visitor pattern)

— Cons: Requires specific code for each tree node type, more
complicated

