
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

Context-sensitive Analysis II:
From Attribute grammars to

ad-hoc syntax-directed translation

COMP 412
Fall 2005

COMP 412, Fall 2002 2Comp 412 Fall 2005

An Extended Attribute Grammar Example

Grammar for a basic block (§ 4.3.3)

Block0 ! Block1 Assign
 " Assign

Assign ! Ident = Expr ;

Expr0
! Expr1 + Term

 " Expr1 – Term

 " Term

Term0
! Term1 * Factor

 " Term1 / Factor

 " Factor

Factor ! (Expr)

 " Number

 " Identifier

Let’s estimate cycle counts

• Each operation has a COST

• Add them, bottom up

• Assume a load per value

• Assume no reuse

Simple problem for an AG

Hey, this looks useful !

COMP 412, Fall 2002 3Comp 412 Fall 2005

An Extended Example (continued)
Block0

! Block1 Assign Block0.cost " Block1.cost +

 Assign.cost
Assign Block0.cost " Assign.cost

Assign ! Ident = Expr ; Assign.cost " COST(store) +
 Expr.cost

Expr0
! Expr1 + Term Expr0.cost " Expr1.cost +

 COST(add) + Term.cost
Expr1 – Term Expr0.cost " Expr1.cost +

 COST(add) + Term.cost
Term Expr0.cost " Term.cost

Term0
! Term1 * Factor Term0.cost " Term1.cost +

 COST(mult) + Factor.cost
Term1 / Factor Term0.cost " Term1.cost +

 COST(div) + Factor.cost
Factor Term0.cost " Factor.cost

Factor ! (Expr) Factor.cost " Expr.cost
Number Factor.cost " COST(loadI)
Identifier Factor.cost " COST(load)

These are
all
synthesized
attributes !

Values flow
from rhs to
lhs in prod’ns

COMP 412, Fall 2002 4Comp 412 Fall 2005

An Extended Example (continued)

Properties of the example grammar
• All attributes are synthesized ⇒ S-attributed grammar

• Rules can be evaluated bottom-up in a single pass
— Good fit to bottom-up, shift/reduce parser

• Easily understood solution
• Seems to fit the problem well

What about an improvement?
• Values are loaded only once per block (not at each use)
• Need to track which values have been already loaded

COMP 412, Fall 2002 5Comp 412 Fall 2005

Adding load tracking
• Need sets Before and After for each production
• Must be initialized, updated, and passed around the tree

A Better Execution Model

Factor ! (Expr) Factor.cost " Expr.cost ;

Expr.Before " Factor.Before ;

Factor.After " Expr.After

 # Number Factor.cost " COST(loadi) ;

Factor.After " Factor.Before

 # Identifier If (Identifier.name $ Factor.Before)

 then
 Factor.cost " COST(load);

 Factor.After " Factor.Before

 % { Identifier.name }

 else
 Factor.cost " 0

 Factor.After " Factor.Before

This looks more complex!

COMP 412, Fall 2002 6Comp 412 Fall 2005

• Load tracking adds complexity
• But, most of it is in the “copy rules”
• Every production needs rules to copy Before & After

A sample production

These copy rules multiply rapidly
Each creates an instance of the set
Lots of work, lots of space, lots of rules to write

A Better Execution Model

Expr! ! Expr" # Term Expr!$cost " Expr"$cost #
 COST%add& # Term$cost ;
Expr"$Before " Expr!$Before ;
Term$Before " Expr"$After;
Expr!$After " Term$After

COMP 412, Fall 2002 7Comp 412 Fall 2005

What about accounting for finite register sets?
• Before & After must be of limited size
• Adds complexity to Factor→Identifier
• Requires more complex initialization

Jump from tracking loads to tracking registers is small
• Copy rules are already in place
• Some local code to perform the allocation

An Even Better Model

COMP 412, Fall 2002 8Comp 412 Fall 2005

And Its Extensions
Tracking loads
• Introduced Before and After sets to record loads
• Added ≥ 2 copy rules per production

— Serialized evaluation into execution order
• Made the whole attribute grammar large & cumbersome

Finite register set
• Complicated one production (Factor → Identifier)
• Needed a little fancier initialization
• Changes were quite limited

Why is one change hard and the other easy?

COMP 412, Fall 2002 9Comp 412 Fall 2005

The Moral of the Story

• Non-local computation needed lots of supporting rules
• Complex local computation was relatively easy

The Problems
• Copy rules increase cognitive overhead
• Copy rules increase space requirements

— Need copies of attributes
— Can use pointers, for even more cognitive overhead

• Result is an attributed tree (somewhat subtle points)
— Must build the parse tree
— Either search tree for answers or copy them to the root

COMP 412, Fall 2002 10Comp 412 Fall 2005

Addressing the Problem

If you gave this problem to a chief programmer in COMP 314
• Introduce a central repository for facts
• Table of names

— Field in table for loaded/not loaded state

• Avoids all the copy rules, allocation & storage headaches
• All inter-assignment attribute flow is through table

— Clean, efficient implementation
— Good techniques for implementing the table (hashing, § B.3)

— When it is done, information is in the table !
— Cures most of the problems

• Unfortunately, this design violates the functional paradigm
— Do we care?

COMP 412, Fall 2002 11Comp 412 Fall 2005

The Realist’s Alternative
Ad-hoc syntax-directed translation
• Associate a snippet of code with each production
• At each reduction, the corresponding snippet runs
• Allowing arbitrary code provides complete flexibility

— Includes ability to do tasteless & bad things

To make this work
• Need names for attributes of each symbol on lhs & rhs

— Typically, one attribute passed through parser + arbitrary code
(structures, globals, statics, …)

— Yacc introduced $$, $1, $2, … $n, left to right
• Need an evaluation scheme

— Fits nicely into LR(1) parsing algorithm

COMP 412, Fall 2002 12Comp 412 Fall 2005

Reworking the Example (with load tracking)

Block0
! Block1 Assign
" Assign

Assign ! Ident = Expr ; cost# cost + COST(store);

Expr0
! Expr1 + Term cost# cost + COST(add);
" Expr1 – Term cost# cost + COST(sub);
" Term

Term0
! Term1 * Factor cost# cost + COST(mult);
" Term1 / Factor cost# cost + COST(div);
" Factor

Factor ! (Expr)
" Number cost# cost + COST(loadi);
" Identifier { i# hash(Identifier);

 if (Table[i].loaded = false)

 then {

 cost # cost + COST(load);

 Table[i].loaded # true;

 }

}

This looks
cleaner &

simpler than
the AG sol’n !

One missing
detail: initializing

cost

COMP 412, Fall 2002 13Comp 412 Fall 2005

Reworking the Example (with load tracking)

Start ! Init Block

Init ! " cost # 0;

Block0
! Block1 Assign
$ Assign

Assign ! Ident = Expr ; cost# cost + COST(store);

 … and so on as in the previous version of the example …

• Before parser can reach Block, it must reduce Init

• Reduction by Init sets cost to zero

This is an example of splitting a production to create a reduction
in the middle — for the sole purpose of hanging an action routine
there!

COMP 412, Fall 2002 14Comp 412 Fall 2005

Reworking the Example (with load tracking)
Block0

! Block1 Assign $$ " $1 + $2 ;
Assign $$ " $1 ;

Assign ! Ident = Expr ; $$" COST(store) + $3;

Expr0
! Expr1 + Term $$" $1 + COST(add) + $3;
Expr1 – Term $$" $1 + COST(sub) + $3;
Term $$ " $1;

Term0
! Term1 * Factor $$ " $1 + COST(mult) + $3;
Term1 / Factor $$ " $1 + COST(div) + $3;
Factor $$ " $1;

Factor ! (Expr) $$ " $2;
Number $$ " COST(loadi);
Identifier { i" hash(Identifier);

 if (Table[i].loaded = false)
 then {
 $$ " COST(load);
 Table[i].loaded " true;
 }
 else $$ " 0
}

This version
passes the
values through
attributes. It
avoids the
need for
initializing
“cost”

COMP 412, Fall 2002 15Comp 412 Fall 2005

Example — Building an Abstract Syntax Tree

• Assume constructors for each node
• Assume stack holds pointers to nodes
• Assume yacc syntax

Goal ! Expr $$ = $1;

Expr ! Expr + Term $$ = MakeAddNode($1,$3);

| Expr – Term $$ = MakeSubNode($1,$3);

| Term $$ = $1;

Term ! Term * Factor $$ = MakeMulNode($1,$3);

| Term / Factor $$ = MakeDivNode($1,$3);

| Factor $$ = $1;

Factor ! (Expr) $$ = $2;

| number $$ = MakeNumNode(token);

| id $$ = MakeIdNode(token);

COMP 412, Fall 2002 16Comp 412 Fall 2005

Reality
Most parsers are based on this ad-hoc style of context-

sensitive analysis

Advantages
• Addresses the shortcomings of the AG paradigm
• Efficient, flexible

Disadvantages
• Must write the code with little assistance
• Programmer deals directly with the details

Most parser generators support a yacc-like notation

COMP 412, Fall 2002 17Comp 412 Fall 2005

Typical Uses
• Building a symbol table

— Enter declaration information as processed
— At end of declaration syntax, do some post processing
— Use table to check errors as parsing progresses

• Simple error checking/type checking
— Define before use → lookup on reference
— Dimension, type, ... → check as encountered
— Type conformability of expression → bottom-up walk
— Procedure interfaces are harder

– Build a representation for parameter list & types
– Create list of sites to check
– Check offline, or handle the cases for arbitrary orderings

assumes table
is global

COMP 412, Fall 2002 18Comp 412 Fall 2005

Is This Really “Ad-hoc” ?
Relationship between practice and attribute grammars

Similarities
• Both rules & actions associated with productions
• Application order determined by tools, not author
• (Somewhat) abstract names for symbols

Differences
• Actions applied as a unit; not true for AG rules
• Anything goes in ad-hoc actions; AG rules are functional
• AG rules are higher level than ad-hoc actions

