## Parsing VI <br> LR(1) Parsers

Copyright 2005, Keith D. Cooper, Ken Kennedy \& Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

## LR(1) Parsers

- LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for handle recognition
- LR(1) parsers recognize languages that have an LR(1) grammar

Informal definition:
A grammar is $\operatorname{LR}(1)$ if, given a rightmost derivation

$$
S \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow \text { sentence }
$$

We can

1. isolate the handle of each right-sentential form $\gamma_{i}$, and
2. determine the production by which to reduce,
by scanning $\gamma_{i}$ from left-to-right, going at most 1 symbol
beyond the right end of the handle of $\gamma_{i}$

## Building LR(1) Parsers

How do we generate the ACTION and GOTO tables?

- Use the grammar to build a model of the DFA
- Use the model to build ACTION \& GOTO tables
- If construction succeeds, the grammar is LR(1)

The Big Picture

Terminal or non-terminal

- Model the state of the parser
- Use two functions goto $(s, X)$ and closure( $s$ )
- goto() is analogous to move() in the subset construction
- closure() adds information to round out a state
- Build up the states and transition functions of the DFA
- Use this information to fill in the ACTION and GOTO tables


## LR(1) Items

The production $A \rightarrow \beta$, where $\beta=B_{1} B_{2} B_{3}$ with lookahead $\underline{a}$, can give rise to 4 items

$$
\left[A \rightarrow \cdot B_{1} B_{2} B_{3}, q\right],\left[A \rightarrow B_{1} \cdot B_{2} B_{3}, a\right],\left[A \rightarrow B_{1} B_{2} \cdot B_{3}, a\right], \&\left[A \rightarrow B_{1} B_{2} B_{3} \cdot, a\right]
$$

The set of $\operatorname{LR}(1)$ items for a grammar is finite
What's the point of all these lookahead symbols?

- Carry them along to choose the correct reduction, if there is a choice
- Lookaheads are bookkeeping, unless item has - at right end
- Has no direct use in $[A \rightarrow \beta \cdot \gamma, a]$
- In $[A \rightarrow \beta \cdot, \underline{a}]$, a lookahead of $\underline{a}$ implies a reduction by $A \rightarrow \beta$
- For $\{[A \rightarrow \beta \cdot, \underline{a}],[B \rightarrow \gamma \cdot \delta, \underline{b}]\}, \underline{a} \Rightarrow$ reduce to $A ; \operatorname{FIRST}(\delta) \Rightarrow$ shift
$\Rightarrow$ Limited right context is enough to pick the actions


## LR(1) Table Construction

High-level overview
1 Build the canonical collection of sets of LR(1) Items, I
a Begin in an appropriate state, $s_{0}$
$-\left[S^{\prime} \rightarrow \cdot S, E O F\right]$, along with any equivalent items

- Derive equivalent items as closure ( $s_{0}$ )
b Repeatedly compute, for each $s_{k}$, and each $X$, goto $\left(s_{k}, X\right)$
- If the set is not already in the collection, add it
- Record all the transitions created by goto()

This eventually reaches a fixed point
2 Fill in the table from the collection of sets of $\operatorname{LR}(1)$ items
The canonical collection completely encodes the
transition diagram for the handle-finding DFA

## Computing Closures

Closure(s) adds all the items implied by items already in $s$

- Any item $[A \rightarrow \beta \bullet B \delta, a]$ implies $[B \rightarrow \bullet \tau, x]$ for each production with $B$ on the lhs, and each $x \in \operatorname{FIRST}(\delta \underline{a})$
- Since $\beta B \delta$ is valid, any way to derive $\beta B \delta$ is valid, too

The algorithm

```
Closure(s)
    while (s is still changing)
    items [A->\beta\cdotB\delta,a] \ins
    \forallproductions B->\tau
    b \in FIRST(\delta\underline{a})// \delta might be }
        if [B->\cdot\tau,[])\not\ins
        then add [B-> 勿,\underline{b}] to s
```

- Classic fixed-point method
- Halts because $s \subset$ Items
- Worklist version is faster
- Closure "fills out" a state

Pay close attention to lookahead generation

## Example From SheepNoise

Initial step builds the item [Goal $\rightarrow$ •SheepNoise,EOF] and takes its closure()

Closure([Goal $\rightarrow$ •SheepNoise,EOF])

| Item | From |
| :---: | :---: |
| [Goal $\rightarrow$-SheepNoise, EOF] | Original item |
| [SheepNoise $\rightarrow$-SheepNoise baa, EOF] | 1, $\delta \underline{a}$ is EOF |
| [SheepNoise $\rightarrow$ - baa, EOF] | $1, \delta \underline{a}$ is EOF |
| [SheepNoise $\rightarrow$-SheepNoise baa,baa] | 2, $\delta \underline{\text { is baa EOF }}$ |
| [SheepNoise $\rightarrow$ - baa, baa] | 2, $\delta \underline{\text { is baa EOF }}$ |

Remember, this is the left-recursive SheepNoise: EaC shows the rightrecursive version.

So, $S_{0}$ is
\{ [Goal $\rightarrow$ •SheepNoise,EOF], [SheepNoise $\rightarrow$ • SheepNoise baa, EOF], [SheepNoise $\rightarrow$ •baa, EOF], [SheepNoise $\rightarrow$ • SheepNoise baa,baa], [SheepNoise $\rightarrow$-baa,baa] \}

## Computing Gotos

Goto( $s, x$ ) computes the state that the parser would reach if it recognized an $x$ while in state $s$

- $\operatorname{Goto}(\{[A \rightarrow \beta \bullet X \delta, \underline{a}]\}, X)$ produces $[A \rightarrow \beta X \bullet \delta, \underline{a}] \quad$ (obviously)
- It also includes closure ( $[A \rightarrow \beta X \cdot \delta, a]$ ) to fill out the state

The algorithm

```
Goto(s,X)
    new}\leftarrow
    | items [A->\beta\cdotX\delta,q] }\in
        new \leftarrownew \cup[A->\betaX·\delta,g]
    return closure(new)
```

- Not a fixed-point method!
- Straightforward computation
- Uses closure( )
- Goto() moves us forward


## Example from SheepNoise

$S_{0}$ is $\{[$ Goal $\rightarrow \cdot$ SheepNoise,EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, EOF], [SheepNoise $\rightarrow$ • baa, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa,baa], [SheepNoise $\rightarrow$ •baa,baa] \}

Goto( $S_{0}$, baa )

- Loop produces

| Item | From |
| :---: | :---: |
| [SheepNoise $\rightarrow$ baa $\cdot$, EOF] [SheepNoise $\rightarrow$ baa•, baa] | Item 3 in so Item 5 in so |

- Closure adds nothing since - is at end of rhs in each item

In the construction, this produces $S_{2}$ $\{[$ SheepNoise $\rightarrow \underline{\text { baa } \cdot} \cdot\{\underline{E O F}$, baa $\}]\}$

New, but obvious, notation for two distinct items
[SheepNoise $\rightarrow$ baa • EOF] \&
[SheepNoise $\rightarrow \underline{\text { baa }} \cdot$, baa]

## Building the Canonical Collection

Start from $s_{0}=$ closure $\left(\left[S^{\prime} \rightarrow S, E O F\right]\right)$
Repeatedly construct new states, until all are found
The algorithm

$$
\begin{aligned}
& S_{0} \leftarrow \text { closure }\left(\left[S^{\prime} \rightarrow S, E O F\right]\right) \\
& S \leftarrow\left\{S_{0}\right\} \\
& k \leftarrow 1 \\
& \text { while }(S \text { is still changing }) \\
& \forall S_{j} \in S \text { and } \forall x \in(T \cup N T) \\
& S_{k} \leftarrow \operatorname{goto}\left(S_{j}, x\right) \\
& r e c o r d S_{j} \rightarrow S_{k} \text { on } x \\
& \text { if } S_{k} \notin S \text { then } \\
& S \leftarrow S \cup\left\{S_{k}\right\} \\
& k \leftarrow k+1
\end{aligned}
$$

- Fixed-point computation
- Loop adds to $S$
- $S \subseteq 2^{\text {ITEMS }}$, so $S$ is finite
- Worklist version is faster


## Example from SheepNoise

Starts with $\mathrm{S}_{0}$
$S_{0}:\{[$ Goal $\rightarrow$ •SheepNoise, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, EOF], [SheepNoise $\rightarrow$ •baa, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, baa], [SheepNoise $\rightarrow$-baa, baa] \}

Iteration 1 computes

```
\(S_{1}=\operatorname{Goto}\left(S_{0}\right.\), SheepNoise \()=\)
    \(\{\) [Goal \(\rightarrow\) SheepNoise •, EOF], [SheepNoise \(\rightarrow\) SheepNoise - baa, EOF],
```

        [SheepNoise \(\rightarrow\) SheepNoise - baa, baa] \(\}\)
    $S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow \underline{\text { baa } \cdot \text { EOF }], ~}$
[SheepNoise $\rightarrow$ baa •, baa] \}

Iteration 2 computes

Nothing more to compute, since e is at the end of every item in $S_{3}$.

$$
S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[\text { SheepNoise } \rightarrow \text { SheepNoise baa } \because \text { EOF }],
$$

$$
\text { [SheepNoise } \rightarrow \text { SheepNoise baa } \cdot, \text { baa] }\}
$$

## Example from SheepNoise

$S_{0}:\{[$ Goal $\rightarrow$ •SheepNoise, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, EOF], [SheepNoise $\rightarrow$ • baa, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, baa], [SheepNoise $\rightarrow$ • baa, baa] \}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
$\{[$ Goal $\rightarrow$ SheepNoise •, EOF], [SheepNoise $\rightarrow$ SheepNoise - baa, EOF],
[SheepNoise $\rightarrow$ SheepNoise - baa, baa] \}
$S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow \underline{\text { baa } \cdot \text { EOF }], ~}$ [SheepNoise $\rightarrow$ baa •, baa] \}
$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow$ SheepNoise baa $\cdot$ EOF $]$, [SheepNoise $\rightarrow$ SheepNoise baa •, baa] \}

## Filling in the ACTION and GOTO Tables

The algorithm $x$ is the state number
$\forall \operatorname{set} S_{x} \in S$
$\forall$ item $i \in S_{x}$
if $i$ is $[A \rightarrow \beta \bullet \underline{a} \delta, \underline{b}]$ and $\operatorname{goto}\left(S_{x}, \underline{a}\right)=S_{k}, \underline{a} \in T \quad \mid$. before $T \Rightarrow$ shift then ACTION $[x, \underline{a}] \leftarrow$ "shift $k$ "
else if $i$ is $\left[S^{\prime} \rightarrow S \cdot, E O F\right]$ then $\operatorname{ACTION}[x, a] \leftarrow$ "accept" have Goal $\Rightarrow$ accept
else if $i$ is $[A \rightarrow \beta \cdot, \underline{a}]$
then $\operatorname{ACTION}\left[x, \underline{\underline{0}} \leftarrow\right.$ "reduce $A \rightarrow \beta^{\prime \prime} \quad \mid$ at end $\Rightarrow$ reduce
$\forall n \in N T$
if $\operatorname{goto}\left(S_{x}, n\right)=S_{k}$
then GOTO $[x, n] \leftarrow k$
Many items generate no table entry
$\rightarrow$ Closure( ) instantiates FIRST $(X)$ directly for $[A \rightarrow \beta \cdot X \delta, \underline{a}]$

## Example from SheepNoise


$\begin{aligned} S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)= & \{[\text { SheepNoise } \rightarrow \text { SheepNoise baa } \cdot, \text { EOF }], \\ & {[S h e e p N o i s e \rightarrow \text { SheepNoise baa } \cdot \text { baa }]\} }\end{aligned}$

## Example from SheepNoise

$S_{0}:\{[$ Goal $\rightarrow$ •SheepNoise, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, EOF],
[SheepNoise $\rightarrow$ • baa, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, baa],
[SheepNoise $\rightarrow$ • baa, baa] \}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
$\{[$ Goal $\rightarrow$ SheepNoise •, EOF], [SheepNoise $\rightarrow$ SheepNoise baa, EOF],
[SheepNoise $\rightarrow$ SheepNoise - baa, baa]\}
so, ACTION[ $S_{1}$, baa $]$
$S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow$ baa- EOF $]$,
is "shift $S_{3}$ " (clause 1)
[SheepNoise $\rightarrow$ baa •, baa] \}
$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow$ SheepNoise baa $\cdot$ EOF $]$, [SheepNoise $\rightarrow$ SheepNoise baa •, baa] \}

## Example from SheepNoise

$S_{0}:\{[$ Goal $\rightarrow$ • SheepNoise, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, EOF],
[SheepNoise $\rightarrow$ • baa, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, baa],
[SheepNoise $\rightarrow$ •baa, baa] \}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
$\{[$ Goal $\rightarrow$ SheepNoise •, EOF], [SheepNoise $\rightarrow$ SheepNoise - baa, EOF],
[SheepNoise $\rightarrow$ SheepNoise - baa, baa]
$S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow \underline{\text { baa } \cdot \text { EOF }], ~}$ is "accept" (clause 2)
$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow$ SheepNoise baa $\cdot$ EOF $]$, [SheepNoise $\rightarrow$ SheepNoise baa •, baa]\}

## Example from SheepNoise

$S_{0}:\{[$ Goal $\rightarrow$ • SheepNoise, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, EOF],
[SheepNoise $\rightarrow$ • baa, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, baa],
[SheepNoise $\rightarrow$ •baa, baa] \}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
$\{[$ Goal $\rightarrow$ SheepNoise •, EOF], [SheepNoise $\rightarrow$ SheepNoise - baa, EOF],
[SheepNoise $\rightarrow$ SheepNoise - baa, baa]\}
$S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\frac{\left\{\begin{array}{l}{[\text { SheepNoise } \rightarrow \text { baa • EOF }],} \\ [\text { SheepNoise } \rightarrow \text { baa } \cdot \text {, baa }]\}\end{array}\right.}{\text { "reduce 3" (clause 3) }}$
$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow$ SheepNoise baa $\cdot$ EOF $]$, [SheepNoise $\rightarrow$ SheepNoise baa •, baa] \}

## Example from SheepNoise

$S_{0}:\{[$ Goal $\rightarrow$ •SheepNoise, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, EOF],
[SheepNoise $\rightarrow$ • baa, EOF], [SheepNoise $\rightarrow \cdot$ SheepNoise baa, baa],
[SheepNoise $\rightarrow$ • baa, baa] \}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$


## Example from SheepNoise

The GOTO Table records Goto transitions on NTs
$S_{0}:\{[$ Goal $\rightarrow$ • SheepNoise, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, EOF],
[SheepNoise $\rightarrow$ • baa, EOF], [SheepNoise $\rightarrow$ •SheepNoise baa, baa],
[SheepNoise $\rightarrow$ • baa, baa] \}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
$\{[$ Goal $\rightarrow$ SheepNoise •, EOF], [SheepNoise $\rightarrow$ SheepNoise • baa, EOF],
[SheepNoise $\rightarrow$ SheepNoise - baa, baa] \}
$\left.S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)\right\}$ $\begin{gathered}\{[\text { SheepNoise } \rightarrow \underline{\text { baa }} \cdot \because, \text { EOF }], \\ {[\text { SheepNoise } \rightarrow \underline{\text { baa }} \cdot \underline{\text { baa }]\}}\}}\end{gathered}$
Based on T, not NT

$$
\begin{aligned}
S_{3}=\operatorname{Goto}\left(S_{1}, \text { baa }\right)=\{ & {[\text { SheepNoise } \rightarrow \text { SheepNoise baa } \cdot \text {, EOF }], } \\
& {[\text { SheepNoise } \rightarrow \text { SheepNoise baa } \cdot \text {, baa }\} }
\end{aligned}
$$

## ACTION \& GOTO Tables

Here are the tables for the augmented left-recursive SheepNoise grammar

The tables

| ACTION |  |  |
| :---: | :---: | :---: |
| State | EOF | baa |
| 0 | - | shift 2 |
| 1 | accept | shift 3 |
| 2 | reduce 3 | reduce 3 |
| 3 | reduce 2 | reduce 2 |


| GOTO |  |
| :---: | :---: |
| State | SheepNoise |
| 0 | 1 |
| 1 | 0 |
| 2 | 0 |
| 3 | 0 |

Remember, this is the left-recursive SheepNoise: EaC shows the rightrecursive version.

The grammar

| 1 | Goal | $\rightarrow$ | SheepNoise |
| :--- | :---: | :--- | :--- |
| 2 | SheepNoise | $\rightarrow$ | SheepNoise baa |
| 3 |  |  | baa |

## What can go wrong?

What if set $s$ contains $[A \rightarrow \beta \cdot \underline{a} \gamma, \underline{b}]$ and $[B \rightarrow \beta \cdot, \underline{a}]$ ?

- First item generates "shift", second generates "reduce"
- Both define ACTION[s,a] - cannot do both actions
- This is a fundamental ambiguity, called a shift/reduce error
- Modify the grammar to eliminate it
- Shifting will often resolve it correctly

What is set $s$ contains $\left[A \rightarrow \gamma^{\cdot}, \underline{a}\right]$ and $\left[B \rightarrow \gamma^{\bullet}, \underline{a}\right]$ ?

- Each generates "reduce", but with a different production
- Both define ACTION[s, $\underline{\text { ] } ~-~ c a n n o t ~ d o ~ b o t h ~ r e d u c t i o n s ~}$
- This is a fundamental ambiguity, called a reduce/reduce conflict
- Modify the grammar to eliminate it (PL/I's overloading of (...))

In either case, the grammar is not $L R(1)$

## Shrinking the Tables

Three options:

- Combine terminals such as number \& identifier, $\pm$ \& $=\stackrel{\star}{-}$ \& $\underline{1}$
- Directly removes a column, may remove a row
- For expression grammar, 198 (vs. 384) table entries
- Combine rows or columns
- Implement identical rows once \& remap states
- Requires extra indirection on each lookup $\longleftarrow \left\lvert\, \begin{aligned} & \text { classic space-time } \\ & \text { tradeoff }\end{aligned}\right.$
- Use separate mapping for ACTION \& for GOTO
- Use another construction algorithm
- Both LALR(1) and SLR(1) produce smaller tables
- Implementations are readily available


## $\operatorname{LR}(k)$ versus $\operatorname{LL}(k)$

Finding Reductions
$L R(k)_{n} \Rightarrow$ Each reduction in the parse is detectable with
$\rightarrow$ the complete left context,
$\rightarrow$ the reducible phrase, itself, and
$\rightarrow$ the $k$ terminal symbols to its right
$L L(k) \Rightarrow$ Parser must select the reduction based on
$\rightarrow$ The complete left context
$\rightarrow$ The next $k$ terminals
Thus, $\operatorname{LR}(k)$ examines more contex $\dagger$
"... in practice, programming languages do not actually seem to fall in the gap between LL(1) languages and deterministic languages" J.J. Horning, "LR Grammars and Analysers", in Compiler Construction, An Advanced Course, Springer-Verlag, 1976

## Summary

|  | Advantages | Disadvantages |
| :---: | :--- | :--- |
| Top-down <br> recursive <br> descent | Gast <br> Simplicity <br> Good error detection | Hand-coded <br> High maintenance <br> Right associativity |
| GR(1) | Fast <br> Deterministic langs. <br> Automatable <br> Left associativity | Large working sets <br> Poor error messages <br> Large table sizes |
|  |  |  |

