
Parsing V
LR(1) Parsers

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

N.B.: This lecture
uses a left-recursive
version of the
SheepNoise
grammar. The book
uses a right-
recursive version.

The derivations (&
the tables) are
different.

COMP 412, Fall 2002 2Comp 412 Fall 2005

Scheduling Assignments

Mid-term exam
• available Friday 10/7/2005 (before break)
• due Monday 10/17/2005 (two weekends)

Lab 2 — the dreaded parser
• available Wednedsay 10/5/2005
• choose teams by 10/7/2005
• intermediate progress report due 10/20 to 21/2005

— each team meet with one of the labbies
— concrete milestones for a portion of the grade

• code due 11/1/2005
• report due 11/2/2005

COMP 412, Fall 2002 3Comp 412 Fall 2005

LR(1) Parsers

• LR(1) parsers are table-driven, shift-reduce parsers that
 use a limited right context (1 token) for handle recognition
• LR(1) parsers recognize languages that have an LR(1) grammar

Informal definition:
A grammar is LR(1) if, given a rightmost derivation

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence
We can

1. isolate the handle of each right-sentential form γi, and
2. determine the production by which to reduce,

by scanning γi from left-to-right, going at most 1 symbol
beyond the right end of the handle of γi

COMP 412, Fall 2002 4Comp 412 Fall 2005

LR(1) Parsers

A table-driven LR(1) parser looks like

Tables can be built by hand
However, this is a perfect task to automate

Scanner Table-driven
Parser

ACTION &
GOTO
Tables

Parser
Generator

source
code

grammar

IR

COMP 412, Fall 2002 5Comp 412 Fall 2005

LR(1) Parsers

A table-driven LR(1) parser looks like

Tables can be built by hand
However, this is a perfect task to automate
Just like automating construction of scanners …

Scanner Table-driven
Parser

ACTION &
GOTO
Tables

Parser
Generator

source
code

grammar

IR

Parser
Generator

regular
expression

COMP 412, Fall 2002 6Comp 412 Fall 2005

LR(1) Skeleton Parser
stack.push(INVALID);
 stack.push(s0); // initial state
token = scanner.next_token();
loop forever {
 s = stack.top();
 if (ACTION[s,token] == “reduce A→β”) then {

 stack.popnum(2*|β|); // pop 2*|β| symbols
 s = stack.top();
 stack.push(A); // push A
 stack.push(GOTO[s,A]); // push next state

}
 else if (ACTION[s,token] == “shift si”) then {

stack.push(token); stack.push(si);
token ← scanner.next_token();

}
 else if (ACTION[s,token] == “accept”

& token == EOF)
then break;

else throw a syntax error;
}
report success;

The skeleton parser
• relies on a stack & a scanner
• uses two tables, called

ACTION & GOTO
• shifts |words| times
• reduces |derivation| times

• accepts at most once
• detects errors by failure of

the other three cases

• follows basic scheme for
shift-reduce parsing from
last lecture

COMP 412, Fall 2002 7Comp 412 Fall 2005

To make a parser for L(G), need a set of tables

The grammar

The tables

LR(1) Parsers (parse tables)

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

Remember, this is
the left-recursive
SheepNoise; EaC
shows the right-
recursive version.

COMP 412, Fall 2002 8Comp 412 Fall 2005

Example Parse 1

Stack Input Action

$ s0 baa EOF shift 2

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

The string “baa”

COMP 412, Fall 2002 9Comp 412 Fall 2005

Example Parse 1

Stack Input Action

$ s0 baa EOF shift 2

$ s0 baa s2 EOF reduce 3

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

The string “baa”

COMP 412, Fall 2002 10Comp 412 Fall 2005

Example Parse 1

Stack Input Action

$ s0 baa EOF shift 2

$ s0 baa s2 EOF reduce 3

$ s0 SN s1 EOF

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

The string “baa”

COMP 412, Fall 2002 11Comp 412 Fall 2005

Example Parse 1

Stack Input Action

$ s0 baa EOF shift 2

$ s0 baa s2 EOF reduce 3

$ s0 SN s1 EOF accept

The string “baa”

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

COMP 412, Fall 2002 12Comp 412 Fall 2005

Example Parse 2
The string “baa baa ”

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

Stack Input Action

$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF

COMP 412, Fall 2002 13Comp 412 Fall 2005

Example Parse 2

Stack Input Action

$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

The string “baa baa ”

COMP 412, Fall 2002 14Comp 412 Fall 2005

Example Parse 2

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

Stack Input Action

$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF shift 3

$ s0 SN s1 baa s3 EOF

The string “baa baa ”

COMP 412, Fall 2002 15Comp 412 Fall 2005

Example Parse 2

Stack Input Action

$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF shift 3

$ s0 SN s1 baa s3 EOF reduce 2

$ s0 SN s1 EOF accept

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

The string “baa baa ”

COMP 412, Fall 2002 16Comp 412 Fall 2005

LR(1) Parsers

How does this LR(1) stuff work?
• Unambiguous grammar ⇒ unique rightmost derivation

• Keep upper fringe on a stack
— All active handles include top of stack (TOS)
— Shift inputs until TOS is right end of a handle

• Language of handles is regular (finite)
— Build a handle-recognizing DFA

— ACTION & GOTO tables encode the DFA

• To match subterm, invoke subterm DFA
 & leave old DFA’s state on stack

• Final state in DFA ⇒ a reduce action
— New state is GOTO[state at TOS (after pop), lhs]

— For SN, this takes the DFA to s1

S0

S3

S2

S1

baa

baa

SN

Control DFA for SN

Reduce
action

Reduce
action

COMP 412, Fall 2002 17Comp 412 Fall 2005

Building LR(1) Parsers

How do we generate the ACTION and GOTO tables?
• Use the grammar to build a model of the DFA

• Use the model to build ACTION & GOTO tables
• If construction succeeds, the grammar is LR(1)

The Big Picture
• Model the state of the parser
• Use two functions goto(s, X) and closure(s)

— goto() is analogous to move() in the subset construction
— closure() adds information to round out a state

• Build up the states and transition functions of the DFA

• Use this information to fill in the ACTION and GOTO tables

Terminal or
non-terminal

COMP 412, Fall 2002 18Comp 412 Fall 2005

LR(k) Items
The LR(1) table construction algorithm uses LR(1) items to
represent valid configurations of an LR(1) parser

An LR(k) item is a pair [P, δ], where

P is a production A→β with a • at some position in the rhs

δ is a lookahead string of length ≤ k (words or EOF)
The • in an item indicates the position of the top of the stack
[A→•βγ,a] means that the input seen so far is consistent with the use

of A →βγ immediately after the symbol on top of the stack
[A →β•γ,a] means that the input sees so far is consistent with the use

of A →βγ at this point in the parse, and that the parser has
already recognized β (that is, β is on top of the stack).

[A →βγ•,a] means that the parser has seen βγ, and that a lookahead
symbol of a is consistent with reducing to A.

COMP 412, Fall 2002 19Comp 412 Fall 2005

LR(1) Items

The production A→β, where β = B1B1B1 with lookahead a,
can give rise to 4 items

[A→•B1B2B3,a], [A→B1•B2B3,a], [A→B1B2•B3,a], & [A→B1B2B3•,a]

The set of LR(1) items for a grammar is finite

What’s the point of all these lookahead symbols?
• Carry them along to choose the correct reduction, if there is

a choice

• Lookaheads are bookkeeping, unless item has • at right end
— Has no direct use in [A→β•γ,a]
— In [A→β•,a], a lookahead of a implies a reduction by A →β
— For { [A→β•,a],[B→γ•δ,b] }, a ⇒ reduce to A; FIRST(δ) ⇒ shift

⇒ Limited right context is enough to pick the actions

COMP 412, Fall 2002 20Comp 412 Fall 2005

High-level overview
1 Build the canonical collection of sets of LR(1) Items, I

a Begin in an appropriate state, s0

♦ [S’ →•S,EOF], along with any equivalent items
♦ Derive equivalent items as closure(s0)

b Repeatedly compute, for each sk, and each X, goto(sk,X)
♦ If the set is not already in the collection, add it
♦ Record all the transitions created by goto()

 This eventually reaches a fixed point

2 Fill in the table from the collection of sets of LR(1) items

The canonical collection completely encodes the
transition diagram for the handle-finding DFA

LR(1) Table Construction

COMP 412, Fall 2002 21Comp 412 Fall 2005

Back to Finding Handles

Revisiting an issue from last class

Parser in a state where the stack (the fringe) was
Expr – Term
With lookahead of *

How did it choose to expand Term rather than reduce to Expr?
• Lookahead symbol is the key
• With lookahead of + or –, parser should reduce to Expr
• With lookahead of * or /, parser should shift
• Parser uses lookahead to decide
• All this context from the grammar is encoded in the handle

recognizing mechanism

COMP 412, Fall 2002 22Comp 412 Fall 2005

Back to x – 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id none shift
$ Expr – num * id none shift
$ Expr – num * id 8,3 red. 8
$ Expr – Factor * id 7,3 red. 7
$ Expr – Term * id none shift
$ Expr – Term * id none shift
$ Expr – Term * id 9,5 red. 9
$ Expr – Term * Factor 5,5 red. 5
$ Expr – Term 3,3 red. 3
$ Expr 1,1 red. 1
$ Goal none accept

1. Shift until TOS is the right end of a handle

2. Find the left end of the handle & reduce

Remember this slide from last lecture?

shift here

reduce here

COMP 412, Fall 2002 23Comp 412 Fall 2005

Computing Closures

Closure(s) adds all the items implied by items already in s

• Any item [A→β•Bδ,a] implies [B→•τ,x] for each production
with B on the lhs, and each x ∈ FIRST(δa)

• Since βBδ is valid, any way to derive βBδ is valid, too

The algorithm

Closure(s)
 while (s is still changing)
 ∀ items [A → β •Bδ,a] ∈ s
 ∀ productions B → τ ∈ P
 ∀ b ∈ FIRST(δa) // δ might be ε
 if [B→ • τ,b] ∉ s
 then add [B→ • τ,b] to s

• Classic fixed-point method

• Halts because s ⊂ ITEMS

• Worklist version is faster

• Closure “fills out” a state

COMP 412, Fall 2002 24Comp 412 Fall 2005

Example From SheepNoise
Initial step builds the item [Goal→•SheepNoise,EOF]
and takes its closure()

Closure([Goal→•SheepNoise,EOF])

So, S0 is
{ [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF],
 [SheepNoise→• baa,EOF], [SheepNoise→ • SheepNoise baa,baa],
 [SheepNoise→ • baa,baa] }

Item From

[Goal!•SheepNoise,EOF] Original item

[SheepNoise!•SheepNoise baa,EOF] 1, "a is EOF

[SheepNoise! • baa,EOF] 1, "a is EOF

[SheepNoise!•SheepNoise baa,baa] 2, "a is baa EOF

[SheepNoise! • baa,baa] 2, "a is baa EOF

Remember, this is
the left-recursive
SheepNoise; EaC
shows the right-
recursive version.

COMP 412, Fall 2002 25Comp 412 Fall 2005

Computing Gotos

Goto(s,x) computes the state that the parser would reach
if it recognized an x while in state s

• Goto({ [A→β•Xδ,a] }, X) produces [A→βX•δ,a] (obviously)

• It also includes closure([A→βX•δ,a]) to fill out the state

The algorithm

Goto(s, X)
 new ←Ø
 ∀ items [A→β•Xδ,a] ∈ s
 new ← new ∪ [A→βX•δ,a]

 return closure(new)

• Not a fixed-point method!

• Straightforward computation

• Uses closure ()

• Goto() moves us forward

COMP 412, Fall 2002 26Comp 412 Fall 2005

Example from SheepNoise

S0 is { [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF],
 [SheepNoise→ • baa,EOF], [SheepNoise→ • SheepNoise baa,baa],
 [SheepNoise→ • baa,baa] }

Goto(S0 , baa)
• Loop produces

• Closure adds nothing since • is at end of rhs in each item

In the construction, this produces s2

{ [SheepNoise→baa •, {EOF,baa}]}

Item From

[SheepNoise!baa•, EOF] Item 3 in s0

[SheepNoise!baa•, baa] Item 5 in s0

New, but obvious, notation
for two distinct items

[SheepNoise→baa •, EOF] &
[SheepNoise→baa •, baa]

COMP 412, Fall 2002 27Comp 412 Fall 2005

Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF],
 [SheepNoise→• baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
 [SheepNoise→ • baa, baa] }

S1 = Goto(S0 , SheepNoise) =
{ [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],

 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF],
 [SheepNoise→ SheepNoise baa •, baa] }

COMP 412, Fall 2002 28Comp 412 Fall 2005

Building the Canonical Collection

Start from s0 = closure([S’→S,EOF])

Repeatedly construct new states, until all are found

The algorithm

s0 ← closure ([S’→S,EOF])
S ← { s0 }
k ← 1

while (S is still changing)
 ∀ sj ∈ S and ∀ x ∈ (T ∪ NT)
 sk ← goto(sj,x)
 record sj → sk on x
 if sk ∉ S then

 S ← S ∪ sk

 k ← k + 1

• Fixed-point computation

• Loop adds to S
• S ⊆ 2ITEMS, so S is finite

• Worklist version is faster

COMP 412, Fall 2002 29Comp 412 Fall 2005

Example from SheepNoise
Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF],

 [SheepNoise→• baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
 [SheepNoise→ • baa, baa] }

Iteration 2 computes
 S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF],

 [SheepNoise→ SheepNoise baa •, baa] }

Iteration 1 computes
S1 = Goto(S0 , SheepNoise) =

{ [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],
 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

Nothing more to
compute, since • is at
the end of every item
in S3 .

