Parsing V
 LR(1) Parsers

Copyright 2005, Keith D. Cooper, Ken Kennedy \& Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Scheduling Assignments
Mid-term exam

- available Friday 10/7/2005 (before break)
- due Monday 10/17/2005 (two weekends)

Lab 2 - the dreaded parser

- available Wednedsay 10/5/2005
- choose teams by 10/7/2005
- intermediate progress report due 10/20 to 21/2005
- each team meet with one of the labbies
- concrete milestones for a portion of the grade
- code due 11/1/2005
- report due 11/2/2005

LR(1) Parsers

- LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for handle recognition
- LR(1) parsers recognize languages that have an LR(1) grammar

Informal definition:
A grammar is $\operatorname{LR}(1)$ if, given a rightmost derivation

$$
S \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow \text { sentence }
$$

We can

1. isolate the handle of each right-sentential form γ_{i}, and
2. determine the production by which to reduce,
by scanning γ_{i} from left-to-right, going at most 1 symbol beyond the right end of the handle of γ_{i}

LR(1) Parsers

A table-driven LR(1) parser looks like

Tables can be built by hand
However, this is a perfect task to automate

LR(1) Parsers

A table-driven LR(1) parser looks like

Tables can be built by hand
However, this is a perfect task to automate
Just like automating construction of scanners ...

LR(1) Skeleton Parser

```
stack.push(INVALID);
stack.push(so);
// initial state
token = scanner.next_token();
loop forever {
    s = stack.top();
    if ( ACTION[s,token] == "reduce A->\beta") then {
        stack.popnum(2*|\beta|); // pop 2*|\beta| symbols
        s = stack.top();
        stack.push(A); // push A
        stack.push(GOTO[s,A]); // push next state
    }
    else if ( ACTION[s,token] == "shift s," ) then {
        stack.push(token); stack.push(si);
        token \leftarrow scanner.next_token();
    }
    else if ( ACTION[s,token] == "accept"
                        & token == EOF )
        then break;
    else throw a syntax error;
}
report success:
```

The skeleton parser

- relies on a stack \& a scanner
- uses two tables, called ACTION \& GOTO
- shifts |words| times
- reduces |derivation| times
- accepts at most once
- detects errors by failure of the other three cases
- follows basic scheme for shift-reduce parsing from last lecture

LR(1) Parsers (parse tables)

To make a parser for $L(G)$, need a set of tables
The grammar

1	Goal	\rightarrow	SheepNoise
2	SheepNoise	\rightarrow	SheepNoise baa
3		baa	

Remember, this is the left-recursive SheepNoise; EaC shows the rightrecursive version.

The tables

ACTION		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 3
3	reduce 2	reduce 2

GOTO	
State	SheepNoise
0	1
1	0
2	0
3	0

Example Parse 1

The string "baa"

Stack	Input	Action
$\$$ so	baa EOF	shift 2

1	Goal	\rightarrow	SheepNoise
2	SheepNoise	\rightarrow	SheepNoise baa
3		1	baa

ACTION		
State	EOF	$\underline{\text { baa }}$
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 3
3	reduce 2	reduce 2

GOTO	
State	SheepNoise
0	1
1	0
2	0
3	0

Example Parse 1

The string "baa"

Stack	Input	Action
$\$ s_{0}$	baa EOF	shift 2
$\$ s_{0}$ baa s_{2}	EOF	reduce 3

1	Goal	\rightarrow	SheepNoise
2	SheepNoise	\rightarrow	SheepNoise baa
3		$\underline{\text { baa }}$	

ACTION		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 3
3	reduce 2	reduce 2

GOTO	
State	SheepNoise
0	1
1	0
2	0
3	0

Example Parse 1

The string "baa"

Stack	Input	Action
$\$ s_{0}$	baa EOF	shift 2
$\$ s_{0}$ baa s_{2}	EOF	reduce 3
$\$ s_{0}$ SN s_{1}	EOF	

1	Goal	\rightarrow	SheepNoise
2	SheepNoise	\rightarrow	SheepNoise baa
3		$\underline{\text { baa }}$	

ACTION		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 3
3	reduce 2	reduce 2

GOTO	
State	SheepNoise
0	1
1	0
2	0
3	0

Example Parse 1

The string "baa"

Stack	Input	Action
$\$ s_{0}$	baa EOF	shift 2
$\$ s_{0}$ baa s_{2}	EOF	reduce 3
$\$ s_{0}$ SN s_{1}	EOF	accept

1	Goal	\rightarrow	SheepNoise
2	SheepNoise	\rightarrow	SheepNoise baa
3		$\underline{\text { baa }}$	

ACTION		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 3
3	reduce 2	reduce 2

GOTO	
State	SheepNoise
0	1
1	0
2	0
3	0

Example Parse 2

The string "baa baa "

Stack	Input	Action
$\$ s_{0}$	baa baa EOF	shift 2
$\$ s_{0}$ baa s_{2}	$\underline{\text { baa EOF }}$	

$\begin{array}{\|l} 1 \\ 2 \\ 3 \end{array}$	Goal \rightarrow SheepNoise SheepNoise \rightarrow SheepNoise baa 1 baa				
ACTION				GOTO	
State		EOF	baa	State	SheepNoise
0		-	shift 2	0	1
1		accept	shift 3	1	0
2		reduce 3	reduce 3	2	0
3		reduce 2	reduce 2	3	0

Example Parse 2

The string "baa baa "

Stack	Input	Action
$\$ s_{0}$	$\underline{\text { baa baa EOF }}$	shift 2
$\$ s_{0}$ baa s_{2}	baa EOF	reduce 3
$\$ s_{0} S N s_{1}$	$\underline{\text { baa EOF }}$	

$\begin{array}{\|l} 1 \\ 2 \\ 3 \\ \hline \end{array}$	Goal \rightarrow SheepNoise SheepNoise \rightarrow SheepNoise baa \mid baa				
ACTION				GOTO	
	tate	EOF	baa	State	SheepNoise
	0	-	shift 2	0	1
	1	accept	shift 3	1	0
	2	reduce 3	reduce 3	2	0
	3	reduce 2	reduce 2	3	0

Example Parse 2

The string "baa baa "

Stack	Input	Action
$\$ s_{0}$	$\underline{\text { baa baa EOF }}$	shift 2
$\$ s_{0}$ baa s_{2}	$\frac{\text { baa EOF }}{\text { EOa }}$	reduce 3
$\$ s_{0} S N s_{1}$	$\frac{\text { baF }}{\text { EOF }}$	shift 3
$\$ s_{0} S N s_{1}$ baa s_{3}	$\underline{\text { EOF }}$	

$\begin{array}{\|l\|} 1 \\ 2 \\ 3 \\ \hline \end{array}$	Goal \rightarrow SheepNoise SheepNoise \rightarrow SheepNoise baa 1 baa				
ACTION				GOTO	
	tate	EOF	baa	State	SheepNoise
	0	-	shift 2	0	1
	1	accept	shift 3	1	0
	2	reduce 3	reduce 3	2	0
	3	reduce 2	reduce 2	3	0

Example Parse 2

The string "baa baa "

Stack	Input	Action
$\$ s_{0}$	$\underline{\text { baa }}$ baa EOF	shift 2
$\$ s_{0}$ baa s_{2}	$\underline{\text { baa }}$ EOF	reduce 3
$\$ s_{0} S N s_{1}$	$\underline{\text { baa EOF }}$	shift 3
$\$ s_{0} S N s_{1}$ baa s_{3}	$\underline{\text { EOF }}$	reduce 2
$\$ s_{0} S N s_{1}$	$\underline{\text { EOF }}$	accept

1 2 3	Goal SheepNoise		SheepN SheepN baa
ACTION			
State		EOF	baa
0		-	shift 2
1		accept	shift 3
2		reduce 3	reduce 3
3		reduce 2	reduce 2

Comp 412 Fall 2005

LR(1) Parsers

How does this LR(1) stuff work?

- Unambiguous grammar \Rightarrow unique rightmost derivation
- Keep upper fringe on a stack
- All active handles include top of stack (TOS)
- Shift inputs until TOS is right end of a handle
- Language of handles is regular (finite)

Reduce

- Build a handle-recognizing DFA
- ACTION \& GOTO tables encode the DFA
- To match subterm, invoke subterm DFA \& leave old DFA's state on stack
- Final state in DFA \Rightarrow a reduce action
- New state is GOTO[state at TOS (after pop), /hs]
- For SN, this takes the DFA to s_{1}

Control DFA for SN

Building LR(1) Parsers

How do we generate the ACTION and GOTO tables?

- Use the grammar to build a model of the DFA
- Use the model to build ACTION \& GOTO tables
- If construction succeeds, the grammar is LR(1)

The Big Picture

Terminal or non-terminal

- Model the state of the parser
- Use two functions goto (s, X) and closure(s)
- goto() is analogous to move() in the subset construction
- closure() adds information to round out a state
- Build up the states and transition functions of the DFA
- Use this information to fill in the ACTION and GOTO tables

LR(k) Items

The LR(1) table construction algorithm uses LR(1) items to represent valid configurations of an LR(1) parser

An $\operatorname{LR}(k)$ item is a pair $[P, \delta]$, where
P is a production $A \rightarrow \beta$ with a at some position in the rhs δ is a lookahead string of length $\leq k \quad$ (words or EOF)
The - in an item indicates the position of the top of the stack
[$A \rightarrow \bullet \beta \gamma, a]$ means that the input seen so far is consistent with the use of $A \rightarrow \beta \gamma$ immediately after the symbol on top of the stack
[$A \rightarrow \beta \cdot \gamma, a]$ means that the input sees so far is consistent with the use of $A \rightarrow \beta \gamma$ at this point in the parse, and that the parser has already recognized β (that is, β is on top of the stack).
[$A \rightarrow \beta \gamma^{\cdot}, \underline{a}$] means that the parser has seen $\beta \gamma$, and that a lookahead symbol of \underline{a} is consistent with reducing to A.

LR(1) Items

The production $A \rightarrow \beta$, where $\beta=B_{1} B_{1} B_{1}$ with lookahead \underline{a}, can give rise to 4 items

$$
\left[A \rightarrow \cdot B_{1} B_{2} B_{3}, q\right],\left[A \rightarrow B_{1} \cdot B_{2} B_{3}, a\right],\left[A \rightarrow B_{1} B_{2} \cdot B_{3}, a\right], \&\left[A \rightarrow B_{1} B_{2} B_{3} \cdot, q\right]
$$

The set of $\operatorname{LR}(1)$ items for a grammar is finite
What's the point of all these lookahead symbols?

- Carry them along to choose the correct reduction, if there is a choice
- Lookaheads are bookkeeping, unless item has • at right end
- Has no direct use in $[A \rightarrow \beta \cdot \gamma, a]$
- In $[A \rightarrow \beta \cdot, \underline{a}]$, a lookahead of \underline{a} implies a reduction by $A \rightarrow \beta$
- For $\{[A \rightarrow \beta \cdot, \underline{a}],[B \rightarrow \gamma \cdot \delta, \underline{b}]\}, \underline{a} \Rightarrow$ reduce to $A ; \operatorname{FIRST}(\delta) \Rightarrow$ shift
\Rightarrow Limited right context is enough to pick the actions

LR(1) Table Construction

High-level overview
1 Build the canonical collection of sets of LR(1) Items, I
a Begin in an appropriate state, s_{0}

- [$S^{\prime} \rightarrow \cdot S$, EOF], along with any equivalent items
- Derive equivalent items as closure (s_{0})
b Repeatedly compute, for each s_{k}, and each $X, \operatorname{goto}\left(s_{k}, X\right)$
- If the set is not already in the collection, add it
- Record all the transitions created by goto()

This eventually reaches a fixed point
2 Fill in the table from the collection of sets of $\operatorname{LR}(1)$ items
The canonical collection completely encodes the
transition diagram for the handle-finding DFA

Back to Finding Handles

Revisiting an issue from last class
Parser in a state where the stack (the fringe) was
Expr = Term
With lookahead of 夫
How did it choose to expand Term rather than reduce to Expr?

- Lookahead symbol is the key
- With lookahead of \pm or $二$, parser should reduce to Expr
- With lookahead of * or L, parser should shift
- Parser uses lookahead to decide
- All this context from the grammar is encoded in the handle recognizing mechanism

Remember this slide from last lecture?

Back to $\underline{x}=\underline{2}^{*} y$

Stack	Input	Handle	Action	-
\$	$\underline{\text { id }}=$ num * id	none	shift	
\$ id	= num * id	9,1	red. 9	
\$ Factor	= num *id	7,1	red. 7	
\$ Term	- num * id	4,1	red. 4	
\$ Expr	- num * id	none	shift	
\$ Expr $=$	num * id	none	shift	
\$ Expr-num	${ }^{*}$ id	8,3	red. 8	
\$ Expr_Factor	${ }^{*}$ id	7,3	red. 7	shift here
\$ Expr_Term	*id	none	shift	
\$ Expr $=$ Term ${ }^{*}$	id	none	shift	
\$ Expr_Term * id		9,5	red. 9	
\$ Expr_Term ${ }_{-}^{*}$ Factor		5,5	red. 5	
\$ Expr=Term		3,3	red. 3	
\$ Expr		1,1	red. 1	
\$ Goal		none	accept	reduce here

1. Shift until TOS is the right end of a handle
2. Find the left end of the handle \& reduce

Computing Closures

Closure(s) adds all the items implied by items already in s

- Any item $[A \rightarrow \beta \cdot B \delta, a]$ implies $[B \rightarrow \bullet \tau, x]$ for each production with B on the lhs, and each $x \in \operatorname{FIRST}(\delta \underline{a})$
- Since $\beta B \delta$ is valid, any way to derive $\beta B \delta$ is valid, too

The algorithm

```
Closure(s)
    while (s is still changing)
    \foralltems [A -> \beta B\delta,a] }\in
    \forallproductions B->\tau
    \forallg}\in\operatorname{FIRST}(\delta\underline{a})// \delta might be 
        if [B->\cdot\tau,\underline{b}]\not\ins
        then add[B->\cdot\tau,\underline{b}] to s
```

- Classic fixed-point method
- Halts because $s \subset$ Items
- Worklist version is faster
- Closure "fills out" a state

Example From SheepNoise

Initial step builds the item [Goal \rightarrow •SheepNoise,EOF] and takes its closure()

Closure ([Goal \rightarrow •SheepNoise,EOF])

Item	From
[Goal \rightarrow-SheepNoise, EOF]	Original item
[SheepNoise \rightarrow-SheepNoise baa, EOF]	1, $\delta \underline{a}$ is EOF
[SheepNoise \rightarrow - baa, EOF]	$1, \delta \underline{a}$ is EOF
[SheepNoise \rightarrow-SheepNoise baa,baa]	2, $\delta \underline{\text { is baa EOF }}$
[SheepNoise \rightarrow - baa, baa]	2, $\delta \underline{\text { is baa EOF }}$

Remember, this is the left-recursive SheepNoise: EaC shows the rightrecursive version.

So, S_{0} is
$\{[$ Goal \rightarrow • SheepNoise, EOF], [SheepNoise \rightarrow •SheepNoise baa, EOF], [SheepNoise \rightarrow •baa, EOF], [SheepNoise \rightarrow •SheepNoise baa, baa], [SheepNoise \rightarrow •baa, baa] \}

Computing Gotos

Goto(s, x) computes the state that the parser would reach if it recognized an x while in state s

- $\operatorname{Goto}(\{[A \rightarrow \beta \bullet X \delta, \underline{a}]\}, X)$ produces $[A \rightarrow \beta X \cdot \delta, a] \quad$ (obviously)
- It also includes closure $([A \rightarrow \beta X \cdot \delta, a]$) to fill out the state

The algorithm

```
Goto(s,X)
    new}\leftarrow
    | items [A->\beta\cdotX\delta,q] }\in
        new \leftarrownew \cup[A->\betaX·\delta,q]
    return closure(new)
```

- Not a fixed-point method!
- Straightforward computation
- Uses closure()
- Goto() moves us forward

Example from SheepNoise

S_{0} is $\{[$ Goal \rightarrow •SheepNoise,EOF], [SheepNoise \rightarrow •SheepNoise baa, EOF], [SheepNoise \rightarrow • baa, EOF], [SheepNoise \rightarrow •SheepNoise baa,baa], [SheepNoise \rightarrow •baa,baa] \}

Goto(S_{0}, baa)

- Loop produces

Item	From
$\left[\right.$ SheepNoise $\rightarrow \underline{\text { baa }}^{\circ}$, EOF $]$	Item 3 in so
$\left[\right.$ SheepNoise $\rightarrow \underline{\text { baa }}^{\cdot}, \underline{\text { baa }]}$	Item 5 in so

- Closure adds nothing since - is at end of rhs in each item

In the construction, this produces S_{2} $\left\{\left[\right.\right.$ SheepNoise $\rightarrow \underline{\text { baa }} \cdot{ }^{\cdot}$, \{EOF,$\left.\left.\underline{\text { baa }}\right]\right\}$

New, but obvious, notation for two distinct items
[SheepNoise $\rightarrow \underline{\text { baa }} \cdot$, EOF] \&
[SheepNoise $\rightarrow \underline{\text { baa }}{ }^{\bullet}$, baa]

Example from SheepNoise

$S_{0}:\{[$ Goal \rightarrow •SheepNoise, EOF], [SheepNoise \rightarrow •SheepNoise baa, EOF], [SheepNoise \rightarrow • baa, EOF], [SheepNoise \rightarrow •SheepNoise baa, baa], [SheepNoise \rightarrow •baa, baa]\}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
\{ [Goal \rightarrow SheepNoise •, EOF], [SheepNoise \rightarrow SheepNoise - baa, EOF],
[SheepNoise \rightarrow SheepNoise -baa, baa] \}
$S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow \underline{\text { baa } \cdot \text { EOF }], ~}$
[SheepNoise \rightarrow baa •, baa] \}
$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise \rightarrow SheepNoise baa \cdot EOF $]$, [SheepNoise \rightarrow SheepNoise baa •, baa] \}

Building the Canonical Collection

Start from $s_{0}=$ closure $\left(\left[S^{\prime} \rightarrow S, E O F\right]\right)$
Repeatedly construct new states, until all are found
The algorithm

```
so}\leftarrowclosure([\mp@subsup{S}{}{\prime}->S,EOF]
S}\leftarrow{\mp@subsup{s}{0}{}
k}\leftarrow
while (S is still changing)
    \forall\mp@subsup{s}{j}{}\inS and }\forallx\in(T\cupNT
        sk
        record sj-> sk on x
    if }\mp@subsup{s}{k}{}\not\inS\mathrm{ then
    S\leftarrowS\cupSk
    k\leftarrowk+1
```


Example from SheepNoise

Starts with S_{0}
$S_{0}:\{$ [Goal \rightarrow • SheepNoise, EOF], [SheepNoise \rightarrow • SheepNoise baa, EOF], [SheepNoise \rightarrow - baa, EOF], [SheepNoise \rightarrow •SheepNoise baa, baa], [SheepNoise \rightarrow •baa, baa]\}

Iteration 1 computes
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
$\{[$ Goal \rightarrow SheepNoise •, EOF], [SheepNoise \rightarrow SheepNoise - baa, EOF], [SheepNoise \rightarrow SheepNoise - baa, baa] \}
$S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow \underline{\text { baa } \cdot \text { EOF }], ~}$ [SheepNoise \rightarrow baa •, baa] \}

Iteration 2 computes

Nothing more to compute, since • is at the end of every item in S_{3}.
$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise \rightarrow SheepNoise baa EOF], [SheepNoise \rightarrow SheepNoise baa \cdot, baa] $]$

