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N.B.: This lecture
uses a left-recursive
version of the
SheepNoise
grammar.  The book
uses a right-
recursive version.

The derivations (&
the tables) are
different.
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Scheduling Assignments

Mid-term exam
• available Friday 10/7/2005 (before break)
• due Monday 10/17/2005 (two weekends)

Lab 2 — the dreaded parser
• available Wednedsay 10/5/2005
• choose teams by 10/7/2005
• intermediate progress report due 10/20 to 21/2005

— each team meet with one of the labbies
— concrete milestones for a portion of the grade

• code due 11/1/2005
• report due 11/2/2005
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LR(1) Parsers

• LR(1) parsers are table-driven, shift-reduce parsers that
     use a limited right context (1 token) for handle recognition
• LR(1) parsers recognize languages that have an LR(1) grammar

Informal definition:
A grammar is LR(1) if, given a rightmost derivation

S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence
We can

1. isolate the handle of each right-sentential form γi, and
2. determine the production by which to reduce,

by scanning γi from left-to-right, going at most 1 symbol
beyond the right end of the handle of γi
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LR(1) Parsers

A table-driven LR(1) parser looks like

Tables can be built by hand
However, this is a perfect task to automate

Scanner Table-driven
Parser

ACTION & 
GOTO
Tables

Parser
Generator

source
code

grammar

IR
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LR(1) Parsers

A table-driven LR(1) parser looks like

Tables can be built by hand
However, this is a perfect task to automate
Just like automating construction of scanners …

Scanner Table-driven
Parser

ACTION & 
GOTO
Tables

Parser
Generator

source
code

grammar

IR

Parser
Generator

regular
expression
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LR(1) Skeleton Parser
stack.push(INVALID);
 stack.push(s0);                             // initial state
token = scanner.next_token();
loop forever {
   s = stack.top();
   if ( ACTION[s,token] == “reduce A→β” ) then {

    stack.popnum(2*|β|);       // pop 2*|β| symbols
             s = stack.top();
             stack.push(A);                 // push A
             stack.push(GOTO[s,A]);  // push next state

}
   else if ( ACTION[s,token] == “shift si” ) then {

stack.push(token); stack.push(si);
token ← scanner.next_token();

}
   else if ( ACTION[s,token] == “accept”

& token == EOF )
then break;

else throw a syntax error;
}
report success;

The skeleton parser
• relies on a stack & a scanner
• uses two tables, called

ACTION & GOTO
• shifts |words| times
• reduces |derivation| times

• accepts at most once
• detects errors by failure of

the other three cases

• follows basic scheme for
shift-reduce parsing from
last lecture
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To make a parser for L(G), need a set of tables

The grammar

The tables

LR(1) Parsers (parse tables)

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

Remember, this is
the left-recursive
SheepNoise; EaC
shows the right-
recursive version.
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Example Parse 1

Stack Input Action

$ s0 baa EOF shift 2

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

The string “baa”
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Example Parse 1

Stack Input Action

$ s0 baa EOF shift 2

$ s0 baa s2 EOF reduce 3

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

The string “baa”
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Example Parse 1

Stack Input Action

$ s0 baa EOF shift 2

$ s0 baa s2 EOF reduce 3

$ s0 SN s1 EOF

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

The string “baa”
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Example Parse 1

Stack Input Action

$ s0 baa EOF shift 2

$ s0 baa s2 EOF reduce 3

$ s0 SN s1 EOF accept

The string “baa”

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa
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Example Parse 2
The string “baa baa ”

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

Stack Input Action

$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF
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Example Parse 2

Stack Input Action

$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

The string “baa baa ”
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Example Parse 2

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

Stack Input Action

$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF shift 3

$ s0 SN s1 baa s3 EOF

The string “baa baa ”
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Example Parse 2

Stack Input Action

$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF shift 3

$ s0 SN s1 baa s3 EOF reduce 2

$ s0 SN s1 EOF accept

ACTION

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO

State SheepNoise

0 1

1 0

2 0

3 0

1 Goal ! SheepNoise

2 SheepNoise ! SheepNoise baa

3 | baa

The string “baa baa ”
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LR(1) Parsers

How does this LR(1) stuff work?
• Unambiguous grammar ⇒ unique rightmost derivation

• Keep upper fringe on a stack
— All active handles include top of stack (TOS)
— Shift inputs until TOS is right end of a handle

• Language of handles is regular (finite)
— Build a handle-recognizing DFA

— ACTION & GOTO  tables encode the DFA

• To match subterm, invoke subterm DFA
 & leave old DFA’s state on stack

• Final state in DFA ⇒ a reduce action
— New state is GOTO[state at TOS (after pop), lhs]

— For SN, this takes the DFA to s1

S0

S3

S2

S1

baa

baa

SN

Control DFA for SN

Reduce
action

Reduce
action
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Building LR(1) Parsers

How do we generate the ACTION and GOTO tables?
• Use the grammar to build a model of the DFA

• Use the model to build ACTION & GOTO tables
• If construction succeeds, the grammar is LR(1)

The Big Picture
• Model the state of the parser
• Use two functions goto( s, X )  and closure( s )

— goto() is analogous to move() in the subset construction
— closure() adds information to round out a state

• Build up the states and transition functions of the DFA

• Use this information to fill in the ACTION and GOTO tables

Terminal or
non-terminal
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LR(k) Items
The LR(1) table construction algorithm uses LR(1) items to
represent valid configurations of an LR(1) parser

An LR(k) item is a pair [P, δ], where

P is a production A→β with a • at some position in the rhs

δ is a lookahead string of length ≤ k                        (words or EOF)
The • in an item indicates the position of the top of the stack
[A→•βγ,a] means that the input seen so far is consistent with the use

of A →βγ immediately after the symbol on top of the stack
[A →β•γ,a] means that the input sees so far is consistent with the use

of A →βγ at this point in the parse, and that the parser has
already recognized β (that is, β is on top of the stack).

[A →βγ•,a] means that the parser has seen βγ, and that a lookahead
symbol of a is consistent with reducing to A.
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LR(1) Items

The production A→β, where β = B1B1B1 with lookahead a,
can give rise to 4 items

[A→•B1B2B3,a], [A→B1•B2B3,a], [A→B1B2•B3,a], & [A→B1B2B3•,a]

The set of LR(1) items for a grammar is finite

What’s the point of all these lookahead symbols?
• Carry them along to choose the correct reduction, if there is

a choice

• Lookaheads are bookkeeping, unless item has • at right end
— Has no direct use in [A→β•γ,a]
— In [A→β•,a], a lookahead of a implies a reduction by A →β
— For { [A→β•,a],[B→γ•δ,b] }, a ⇒ reduce to A; FIRST(δ) ⇒ shift

⇒ Limited right context is enough to pick the actions
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High-level overview
1 Build the canonical collection of sets of LR(1) Items, I

a Begin in an appropriate state, s0

♦ [S’ →•S,EOF], along with any equivalent items
♦ Derive equivalent items as closure( s0 )

b Repeatedly compute, for each sk, and each X, goto(sk,X)
♦ If the set is not already in the collection, add it
♦ Record all the transitions created by goto( )

     This eventually reaches a fixed point

2 Fill in the table from the collection of sets of LR(1) items

The canonical collection completely encodes the
transition diagram for the handle-finding DFA

LR(1) Table Construction
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Back to Finding Handles

Revisiting an issue from last class

Parser in a state where the stack (the fringe) was
Expr  – Term
With lookahead of  *

How did it choose to expand Term rather than reduce to Expr?
• Lookahead symbol is the key
• With lookahead of + or –, parser should reduce to Expr
• With lookahead of * or /, parser should shift
• Parser uses lookahead to decide
• All this context from the grammar is encoded in the handle

recognizing mechanism
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Back to x – 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id none shift
$ Expr – num * id none shift
$ Expr – num * id 8,3 red. 8
$ Expr – Factor * id 7,3 red. 7
$ Expr – Term * id none shift
$ Expr – Term *   id none shift
$ Expr – Term * id 9,5 red. 9
$ Expr – Term * Factor 5,5 red. 5
$ Expr – Term 3,3 red. 3
$ Expr 1,1 red. 1
$ Goal none accept

1. Shift until TOS is the right end of a handle

2. Find the left end of the handle & reduce

Remember this slide from last lecture?

shift here

reduce here
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Computing Closures

Closure(s)  adds all the items implied by items already in s

• Any item [A→β•Bδ,a] implies [B→•τ,x] for each production
with B on the lhs,  and each x ∈ FIRST(δa)

• Since βBδ is valid, any way to derive βBδ is valid, too

The algorithm

Closure( s )
  while ( s is still changing )
     ∀ items [A → β •Bδ,a] ∈ s
        ∀ productions B → τ  ∈ P
          ∀ b  ∈ FIRST(δa) // δ might be ε
            if  [B→ • τ,b] ∉ s
                then add [B→ • τ,b] to s

• Classic fixed-point method

• Halts because s ⊂ ITEMS

• Worklist version is faster

• Closure “fills out” a state
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Example From SheepNoise
Initial step builds the item [Goal→•SheepNoise,EOF]
and takes its closure( )

Closure( [Goal→•SheepNoise,EOF] )

So, S0  is
{ [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF],
   [SheepNoise→• baa,EOF], [SheepNoise→ • SheepNoise baa,baa],
   [SheepNoise→ • baa,baa] }

Item From

[Goal!•SheepNoise,EOF] Original item

[SheepNoise!•SheepNoise baa,EOF] 1, "a is EOF

[SheepNoise! • baa,EOF] 1, "a is EOF

[SheepNoise!•SheepNoise baa,baa] 2, "a is baa EOF

[SheepNoise! • baa,baa] 2, "a is baa EOF

Remember, this is
the left-recursive
SheepNoise; EaC
shows the right-
recursive version.
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Computing Gotos

Goto(s,x) computes the state that the parser would reach
if it recognized an x  while in state s

• Goto( { [A→β•Xδ,a] }, X ) produces [A→βX•δ,a]      (obviously)

• It also includes closure( [A→βX•δ,a] ) to fill out the state

The algorithm

Goto( s, X )
    new ←Ø
     ∀ items [A→β•Xδ,a] ∈ s
        new ← new ∪ [A→βX•δ,a]

     return closure(new)

• Not a fixed-point method!

• Straightforward computation

• Uses closure ( )

• Goto() moves us forward
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Example from SheepNoise

S0  is { [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF],
        [SheepNoise→ • baa,EOF],  [SheepNoise→ • SheepNoise baa,baa],
        [SheepNoise→ • baa,baa] }

Goto( S0 , baa )
• Loop produces

• Closure adds nothing since • is at end of rhs in each item

In the construction, this produces s2

{ [SheepNoise→baa •, {EOF,baa}]}

Item From

[SheepNoise!baa•, EOF] Item 3 in s0

[SheepNoise!baa•, baa] Item 5 in s0

New, but obvious, notation
for two distinct items

[SheepNoise→baa •, EOF] &
[SheepNoise→baa •, baa]
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Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF],
   [SheepNoise→• baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
   [SheepNoise→ • baa, baa] }

S1  = Goto(S0 , SheepNoise) =
{ [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],

   [SheepNoise→ SheepNoise • baa, baa] }

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF], 
       [SheepNoise→ baa •, baa] }

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF],
                                      [SheepNoise→ SheepNoise baa •, baa] }
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Building the Canonical Collection

Start from s0 = closure( [S’→S,EOF ] )

Repeatedly construct new states, until all are found

The algorithm

s0 ←  closure ( [S’→S,EOF] )
S  ←  { s0  }
k  ←  1

while ( S is still changing )
   ∀ sj ∈ S and ∀ x ∈ ( T ∪ NT )
         sk ←  goto(sj,x)
         record sj → sk on x
    if  sk ∉ S then

  S ← S ∪ sk

    k ← k + 1

• Fixed-point computation

• Loop adds to S
• S ⊆ 2ITEMS, so S is finite

•  Worklist version is faster
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Example from SheepNoise
Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF],

   [SheepNoise→• baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
   [SheepNoise→ • baa, baa] }

Iteration 2 computes
 S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 

                                        [SheepNoise→ SheepNoise baa •, baa] }

Iteration 1 computes
S1  = Goto(S0 , SheepNoise) =

{ [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],
   [SheepNoise→ SheepNoise • baa, baa] }

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF], 
   [SheepNoise→ baa •, baa] }

Nothing more to
compute, since • is at
the end of every item
in S3 .


