
Parsing V
Operator-Precedence Parsing

COMP 412
Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy, & Linda Torczon, all rights
reserved. Students enrolled in Comp 412 at Rice University have explicit
permission to make copies of these materials for their personal use.

2Comp 412 Fall 2005

Shift-reduce Parsing
Shift reduce parsers are easily built and easily understood

A shift-reduce parser has just four actions

• Shift — next word is shifted onto the stack

• Reduce — right end of handle is at top of stack
 Locate left end of handle within the stack

 Pop handle off stack & push appropriate lhs

• Accept — stop parsing & report success

• Error — call an error reporting/recovery routine

Accept & Error are simple

Shift is just a push and a call to the scanner

Reduce takes |rhs| pops & 1 push

3Comp 412 Fall 2005

An Important Lesson about Handles
• To be a handle, a substring of a sentential form γ must have

two properties:
— It must match the right hand side β of some rule A → β

— There must be some rightmost derivation from the goal symbol
that produces the sentential form γ with A → β as the last
production applied

• We have seen that simply looking for right hand sides that
match strings is not good enough

• Critical Question: How can we know when we have found a
handle without generating lots of different derivations?

— Answer: we use look-ahead in the grammar along with tables
produced as the result of ananyzing the grammar.

– There are a number of different ways to do this.
– We will look at two: operator precedence and LR parsing

4Comp 412 Fall 2005

Finding Handles

• Assumption: in a well-formed grammar, every non-terminal
symbol can be found in some legal sentential form

— That is, given a non-terminal A there is a derivation that
produces a sentential form with A somewhere in it

— Consequence: there is a rightmost derivation that produces a
sentential form αAδ with A as the last non-terminal.

— Consequence: If A → β is a production in the grammar, during
shift-reduce parsing, β on the stack is a handle when followed
by δ in the input.

— Special case: let d be the first character of δ. For some
grammars, β on the stack followed by d will always be a handle.

— Even more special case: Let Z be the last symbol (terminal or
non-terminal) of β. In some restricted grammars, called simple
precedence grammars, Z on the stack followed by d in the
input is always the end of a handle.

5Comp 412 Fall 2005

Operator Precedence Parsing
• Even more special case:

— Operator grammar: no production has two non-terminal symbols
in sequence on the right-hand side

— An operator grammar can be parsed using shift-reduce parsing
and precedence relations between terminal symbols to find
handles. This strategy is known as operator precedence parsing.

• Precedence relations: given two terminal symbols x and y
— We say that they have equal precedence or x 8 y if they

appear on the same right-hand side of a rule in the grammar.
— We say that x has lower precedence than y or x A y if x can

appear as the last terminal symbol before a handle in which y
appears as the first terminal symbol.

— We say that x has greater precedence than y or x S y if y can
appear as the first terminal symbol after a handle in which x
appears as the last terminal symbol.

6Comp 412 Fall 2005

Operator Precedence Parse Algorithm

let Stack contain "#";
nextToken = first input token;
while (topTerm(Stack) ≠ "#" and input ≠ "#") do begin

p = precedence [topTerm, nextToken];
if p == “A” or p == "8" then /* shift */

shift nextToken onto stack and advance input;
else if p == "S" then begin /* reduce */

find the shallowest pair of terminals d and s on the stack
such that d A s, where d is the deeper terminal;

pop everything above d off the stack;
push N, the general non-terminal, onto the stack;

end
else if p == "acc" then exit loop; /* accept */
else /* precedence undefined */ report error; /* error */

end

7Comp 412 Fall 2005

Operator Precedence Example

• Recall the simple grammar:

• Operator grammar:

1 Goal ! a A B e

2 A ! A b c

3 | b

4 B ! d

1 Goal ! a A d e

2 A ! A b c

3 | b

8Comp 412 Fall 2005

1 Goal ! a A B e

2 A ! A b c

3 | b

4 B ! d

1 Goal ! a A d e

2 A ! A b c

3 | b

a b c d e #

A acc

a A 8

b S 8 S

c S S

d 8

e S

Operator Precedence Table

Operator Precedence Example

• Recall the simple grammar:

• Operator grammar:

9Comp 412 Fall 2005

Operator Precedence Example

• Recall the simple grammar:

• Operator grammar:

1 Goal ! a A B e

2 A ! A b c

3 | b

4 B ! d

1 Goal ! a A d e

2 A ! A b c

3 | b

Operator Precedence Table

Sentential Next Red’n

Form Prod’n Pos’n

abbcde 3 2

a A bcde 2 4

a A de 1 4

Goal — —

 a b c d e #

A acc

a A

b S 8 S

c S

d 8

e S

10Comp 412 Fall 2005

Operator Precedence Parse Tables for Expressions

1 Goal ! Expr

2 Expr ! Expr + Term

3 | Expr – Term

4 | Term

5 Term ! Term * Factor

6 | Term / Factor

7 | Factor

8 Factor ! number

9 | id

10 | (Expr)

11Comp 412 Fall 2005

Operator Precedence Tables for Expressions

1 Goal ! Expr

2 Expr ! Expr + Term

3 | Expr – Term

4 | Term

5 Term ! Term * Factor

6 | Term / Factor

7 | Factor

8 Factor ! number

9 | id

10 | (Expr)

id num + – * / () #

A A A A A A A acc

id S S S S S S

num S S S S S S

+ A A S S A A A S S

– A A S S A A A S S

* A A S S S S A S S

/ A A S S S S A S S

(A A A A A A A 8

) S S S S S S

12Comp 412 Fall 2005

Operator Precedence Parse of x-2*y

Stack Prec Input Action

A id – num * id # shift
id S – num * id

13Comp 412 Fall 2005

Operator Precedence Parse of x-2*y

Stack Prec Input Action

A id – num * id # shift
id S – num * id # reduce
N A – num * id

14Comp 412 Fall 2005

Operator Precedence Parse of x-2*y

Stack Prec Input Action

A id – num * id # shift
id S – num * id # reduce
N A – num * id # shift
N – A num * id # shift
N – num S * id

15Comp 412 Fall 2005

Operator Precedence Parse of x-2*y

Stack Prec Input Action

A id – num * id # shift
id S – num * id # reduce
N A – num * id # shift
N – A num * id # shift
N – num S * id # reduce
N – N A * id

16Comp 412 Fall 2005

Operator Precedence Parse of x-2*y

Stack Prec Input Action

A id – num * id # shift
id S – num * id # reduce
N A – num * id # shift
N – A num * id # shift
N – num S * id # reduce
N – N A * id # shift
N – N * A id # shift
N – N* id S #

17Comp 412 Fall 2005

Operator Precedence Parse of x-2*y

Stack Prec Input Action

A id – num * id # shift
id S – num * id # reduce
N A – num * id # shift
N – A num * id # shift
N – num S * id # reduce
N – N A * id # shift
N – N * A id # shift
N – N* id S # reduce
N – N * N S #

18Comp 412 Fall 2005

Operator Precedence Parse of x-2*y

Stack Prec Input Action

A id – num * id # shift
id S – num * id # reduce
N A – num * id # shift
N – A num * id # shift
N – num S * id # reduce
N – N A * id # shift
N – N * A id # shift
N – N* id S # reduce
N – N * N S # reduce
N – N S #

19Comp 412 Fall 2005

Operator Precedence Parse of x-2*y

Stack Prec Input Action

A id – num * id # shift
id S – num * id # reduce
N A – num * id # shift
N – A num * id # shift
N – num S * id # reduce
N – N A * id # shift
N – N * A id # shift
N – N* id S # reduce
N – N * N S # reduce
N – N S # reduce
N acc #

20Comp 412 Fall 2005

Operator Precedence Parse of x-2*y

Stack Prec Input Action

A id – num * id # shift
id S – num * id # reduce
N A – num * id # shift
N – A num * id # shift
N – num S * id # reduce
N – N A * id # shift
N – N * A id # shift
N – N* id S # reduce
N – N * N S # reduce
N – N S # reduce
N acc # accept

21Comp 412 Fall 2005

Computing Operator Precedence Relations
• Define the following relations

— N BEFORE t iff there is some production A → β in which non-terminal
N occurs immediately before terminal t

— N AFTER t iff there is some production A → β in which non-terminal N
occurs immediately after terminal t

— N1 FIRST N2 iff there is some production N1→ β in which non-terminal
N2 occurs as the first symbol on the rhs

— N1 LAST N2 iff there is some production N1→ β in which non-terminal
N2 occurs as the last symbol on the rhs

— N FIRSTTERM t iff there is some production N → β in which t is the
first terminal on the rhs

— N LASTTERM t iff there is some production N → β in which t is the
last terminal on the rhs

22Comp 412 Fall 2005

Computing Operator Precedence Relations

• t1 EQUAL t2

— iff there is some production A → β in which t1 immediately
precedes t2 on the right hand side or they are separated by a
single non-terminal

• t1 LESSTHAN t2

— LESSTHAN = AFTERT · FIRST* · FIRSTTERM
— N1 AFTER t1 & N1 →* N2 α & N2 → β & t2 is the first terminal in β

• t1 GREATERTHAN t2

— GREATERTHAN = (LAST* · LASTTERM)T · BEFORE
— N1 BEFORE t2 & N1 →* αN2 & N2 → β & t1 is the last terminal in β

23Comp 412 Fall 2005

Operator Precedence Example

• Recall the operator grammar:

0 G ! # S #

1 S ! a A d e

2 A ! A b c

3 | b

a b c d e #

A acc

a A 8

b S 8 S

c S S

d 8

e S

Operator Precedence Table

24Comp 412 Fall 2005

Operator Precedence Example

• Recall the operator grammar:

• Relations

0 G ! # S #

1 S ! a A d e

2 A ! A b c

3 | b

a b c d e #

G 0 0 0 0 0 1

S 0 0 0 0 1 0

A 0 1 1 0 0 0

a b c d e #

G 0 0 0 0 0 0

S 0 0 0 0 0 1

A 0 1 0 1 0 0

G S A

G 0 0 0

S 0 0 0

A 0 0 0

G S A

G 1 0 0

S 0 1 0

A 0 0 1

LAST LAST*

LASTTERM BEFORE

25Comp 412 Fall 2005

Operator Precedence Example

G S A

a 0 0 0

b 0 0 1

c 0 0 1

d 0 0 0

e 0 1 0

1 0 0

a b c d e #

G 0 0 0 0 0 0

S 0 0 0 0 0 1

A 0 1 0 1 0 0

LASTTERMT

BEFORE

x

=

a b c d e #

a 0 0 0 0 0 0

b 0 1 0 1 0 0

c 0 1 0 1 0 0

d 0 0 0 0 0 0

e 0 0 0 0 0 1

0 0 0 0 0 0

a b c d e #

A acc

a A 8

b S 8 S

c S S

d 8

e S

GRTRTHAN

26Comp 412 Fall 2005

Final Remarks on Operator Precedence
• Developed by Floyd for expression grammar

— But has been used for whole languages
— Sometimes used in a hybrid parser with top-down recursive

descent

• Abstract syntax trees are easy to construct
— Keep a pointer to the AST for each non-terminal in its N node

on the stack
— When a reduction is performed, create an operator node with

pointers to the popped nodes within it — make this the root of
the tree pointed to by the non-terminal pushed onto the stack

— When parsing stops, a pointer to the AST is on top of the stack

• Full parse trees are hard to construct

