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Shift-reduce Parsing
Shift reduce parsers are easily built and easily understood

A shift-reduce parser has just four actions

• Shift — next word is shifted onto the stack

• Reduce — right end of handle is at top of stack
    Locate left end of handle within the stack

    Pop handle off stack & push appropriate lhs

• Accept — stop parsing & report success

• Error  — call an error reporting/recovery routine

Accept & Error are simple

Shift is just a push and a call to the scanner

Reduce takes |rhs| pops & 1 push
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An Important Lesson about Handles
• To be a handle, a substring of a sentential form γ must have

two properties:
— It must match the right hand side β of some rule A → β

— There must be some rightmost derivation from the goal symbol
that produces the sentential form γ with A → β as the last
production applied

• We have seen that simply looking for right hand sides that
match strings is not good enough

• Critical Question: How can we know when we have found a
handle without generating lots of different derivations?

— Answer: we use look-ahead in the grammar along with tables
produced as the result of ananyzing the grammar.

– There are a number of different ways to do this.
– We will look at two: operator precedence and LR parsing
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Finding Handles

• Assumption:  in a well-formed grammar, every non-terminal
symbol can be found in some legal sentential form

— That is, given a non-terminal A there is a derivation that
produces a sentential form with A somewhere in it

— Consequence: there is a rightmost derivation that produces a
sentential form αAδ with A as the last non-terminal.

— Consequence: If A → β is a production in the grammar, during
shift-reduce parsing, β on the stack is a handle when followed
by δ in the input.

— Special case: let d be the first character of δ. For some
grammars, β on the stack followed by d will always be a handle.

— Even more special case: Let Z be the last symbol (terminal or
non-terminal) of β. In some restricted grammars, called simple
precedence grammars, Z on the stack followed by d in the
input is always the end of a handle.
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Operator Precedence Parsing
• Even more special case:

— Operator grammar: no production has two non-terminal symbols
in sequence on the right-hand side

— An operator grammar can be parsed using shift-reduce parsing
and precedence relations between terminal symbols to find
handles. This strategy is known as operator precedence parsing.

• Precedence relations: given two terminal symbols x and y
— We say that they have equal precedence or x 8 y if they

appear on the same right-hand side of a rule in the grammar.
— We say that x has lower precedence than y or x A y if x can

appear as the last terminal symbol before a handle in which y
appears as the first terminal symbol.

— We say that x has greater precedence than y or x S y if y can
appear as the first terminal symbol after a handle in which x
appears as the last terminal symbol.
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Operator Precedence Parse Algorithm

let Stack contain "#";
nextToken = first input token;
while (topTerm(Stack) ≠  "#" and input  ≠  "#") do begin

p = precedence [topTerm, nextToken];
if p == “A” or p == "8" then /* shift */

shift nextToken onto stack and advance input;
else if p == "S" then begin /* reduce */

find the shallowest pair of terminals d and s on the stack
such that d A s, where d is the deeper terminal;

pop everything above d off the stack;
push N, the general non-terminal, onto the stack;

end
else if p == "acc" then exit loop; /* accept */
else /* precedence undefined */ report error; /* error */

end
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Operator Precedence Example

• Recall the simple grammar:

• Operator grammar:

1 Goal ! a A B e

2 A ! A b c

3 | b

4 B ! d

1 Goal ! a A d e

2 A ! A b c

3 | b
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1 Goal ! a A B e

2 A ! A b c

3 | b

4 B ! d

1 Goal ! a A d e

2 A ! A b c

3 | b

a b c d e #

# A acc

a A 8

b S 8 S

c S S

d 8

e S

Operator Precedence Table

Operator Precedence Example

• Recall the simple grammar:

• Operator grammar:
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Operator Precedence Example

• Recall the simple grammar:

• Operator grammar:

1 Goal ! a A B e

2 A ! A b c

3 | b

4 B ! d

1 Goal ! a A d e

2 A ! A b c

3 | b

Operator Precedence Table

Sentential Next Red’n

Form Prod’n Pos’n

abbcde 3 2

a A bcde 2 4

a A de 1 4

Goal — —

 a b c d e # 

# A      acc 

a  A      

b  S  8  S    

c    S    

d     8   

e      S  
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Operator Precedence Parse Tables for Expressions

1 Goal ! Expr

2 Expr ! Expr  + Term

3 | Expr  – Term

4 | Term

5 Term ! Term  * Factor

6 | Term  / Factor

7 | Factor

8 Factor ! number

9 | id

10 | ( Expr )
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Operator Precedence Tables for Expressions

1 Goal ! Expr

2 Expr ! Expr  + Term

3 | Expr  – Term

4 | Term

5 Term ! Term  * Factor

6 | Term  / Factor

7 | Factor

8 Factor ! number

9 | id

10 | ( Expr )

id num + – * / ( ) #

# A A A A A A A acc

id S S S S S S

num S S S S S S

+ A A S S A A A S S

– A A S S A A A S S

* A A S S S S A S S

/ A A S S S S A S S

( A A A A A A A 8

) S S S S S S
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Operator Precedence Parse of x-2*y

Stack Prec Input Action

# A id – num * id # shift
# id S – num * id #
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Operator Precedence Parse of x-2*y

Stack Prec Input Action

# A id – num * id # shift
# id S – num * id # reduce
# N A – num * id #



14Comp 412 Fall 2005

Operator Precedence Parse of x-2*y

Stack Prec Input Action

# A id – num * id # shift
# id S – num * id # reduce
# N A – num * id # shift
# N – A num * id # shift
# N – num S * id #
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Operator Precedence Parse of x-2*y

Stack Prec Input Action

# A id – num * id # shift
# id S – num * id # reduce
# N A – num * id # shift
# N – A num * id # shift
# N – num S * id # reduce
# N – N A * id #
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Operator Precedence Parse of x-2*y

Stack Prec Input Action 

# A  id – num * id # shift 
# id S  – num * id # reduce 
# N A  – num * id # shift 
# N – A  num * id # shift 
# N – num S  * id # reduce 
# N – N A  * id # shift 
# N – N *   A  id # shift 
# N – N* id S  #  
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Operator Precedence Parse of x-2*y

Stack Prec Input Action 

# A  id – num * id # shift 
# id S  – num * id # reduce 
# N A  – num * id # shift 
# N – A  num * id # shift 
# N – num S  * id # reduce 
# N – N A  * id # shift 
# N – N *   A  id # shift 
# N – N* id S  # reduce 
# N – N * N S  #  
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Operator Precedence Parse of x-2*y

Stack Prec Input Action 

# A  id – num * id # shift 
# id S  – num * id # reduce 
# N A  – num * id # shift 
# N – A  num * id # shift 
# N – num S  * id # reduce 
# N – N A  * id # shift 
# N – N *   A  id # shift 
# N – N* id S  # reduce 
# N – N * N S  # reduce 
# N – N  S  #  
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Operator Precedence Parse of x-2*y

Stack Prec Input Action 

# A  id – num * id # shift 
# id S  – num * id # reduce 
# N A  – num * id # shift 
# N – A  num * id # shift 
# N – num S  * id # reduce 
# N – N A  * id # shift 
# N – N *   A  id # shift 
# N – N* id S  # reduce 
# N – N * N S  # reduce 
# N – N  S  # reduce 
# N  acc #  
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Operator Precedence Parse of x-2*y

Stack Prec Input Action

# A id – num * id # shift
# id S – num * id # reduce
# N A – num * id # shift
# N – A num * id # shift
# N – num S * id # reduce
# N – N A * id # shift
# N – N *   A id # shift
# N – N* id S # reduce
# N – N * N S # reduce
# N – N S # reduce
# N acc # accept
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Computing Operator Precedence Relations
• Define the following relations

— N BEFORE t iff there is some production A → β in which non-terminal
N occurs immediately before terminal t

— N AFTER t iff there is some production A → β in which non-terminal N
occurs immediately after terminal t

— N1 FIRST N2 iff there is some production N1→ β in which non-terminal
N2 occurs as the first symbol on the rhs

— N1 LAST N2 iff there is some production N1→ β in which non-terminal
N2 occurs as the last symbol on the rhs

— N FIRSTTERM t iff there is some production N → β in which t is the
first terminal on the rhs

— N LASTTERM t iff there is some production N → β in which t is the
last terminal on the rhs
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Computing Operator Precedence Relations

• t1 EQUAL t2

— iff there is some production A → β in which t1 immediately
precedes t2  on the right hand side or they are separated by a
single non-terminal

• t1 LESSTHAN t2

— LESSTHAN = AFTERT · FIRST* · FIRSTTERM
— N1 AFTER t1 & N1 →* N2 α & N2 → β & t2 is the first terminal in β

• t1 GREATERTHAN t2

— GREATERTHAN = (LAST* · LASTTERM)T · BEFORE
— N1 BEFORE t2 & N1 →* αN2 & N2 → β & t1 is the last terminal in β
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Operator Precedence Example

• Recall the operator grammar:

0 G ! # S #

1 S ! a A d e

2 A ! A b c

3 | b

a b c d e #

# A acc

a A 8

b S 8 S

c S S

d 8

e S

Operator Precedence Table
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Operator Precedence Example

• Recall the operator grammar:

• Relations

0 G ! # S #

1 S ! a A d e

2 A ! A b c

3 | b

a b c d e #

G 0 0 0 0 0 1

S 0 0 0 0 1 0

A 0 1 1 0 0 0

a b c d e #

G 0 0 0 0 0 0

S 0 0 0 0 0 1

A 0 1 0 1 0 0

G S A

G 0 0 0

S 0 0 0

A 0 0 0

G S A

G 1 0 0

S 0 1 0

A 0 0 1

LAST LAST*

LASTTERM BEFORE
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Operator Precedence Example

G S A

a 0 0 0

b 0 0 1

c 0 0 1

d 0 0 0

e 0 1 0

# 1 0 0

a b c d e #

G 0 0 0 0 0 0

S 0 0 0 0 0 1

A 0 1 0 1 0 0

LASTTERMT

BEFORE

x

=

a b c d e #

a 0 0 0 0 0 0

b 0 1 0 1 0 0

c 0 1 0 1 0 0

d 0 0 0 0 0 0

e 0 0 0 0 0 1

# 0 0 0 0 0 0

a b c d e #

# A acc

a A 8

b S 8 S

c S S

d 8

e S

GRTRTHAN
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Final Remarks on Operator Precedence
• Developed by Floyd for expression grammar

— But has been used for whole languages
— Sometimes used in a hybrid parser with top-down recursive

descent

• Abstract syntax trees are easy to construct
— Keep a pointer to the AST for each non-terminal in its N node

on the stack
— When a reduction is performed, create an operator node with

pointers to the popped nodes within it — make this the root of
the tree pointed to by the non-terminal pushed onto the stack

— When parsing stops, a pointer to the AST is on top of the stack

• Full parse trees are hard to construct


