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Parsing Techniques

Top-down parsers     (LL(1), recursive descent)

• Start at the root of the parse tree and grow toward leaves
• Pick a production & try to match the input
• Bad “pick” ⇒ may need to backtrack
• Some grammars are backtrack-free           (predictive parsing)

Bottom-up parsers     (LR(1), operator precedence)

• Start at the leaves and grow toward root
• As input is consumed, encode possibilities in an internal state
• Start in a state valid for legal first tokens
• Bottom-up parsers handle a large class of grammars
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Bottom-up Parsing                                (definitions)

The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps
S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence

• Each γi is a sentential form
— If γ contains only terminal symbols, γ is a sentence in L(G)
— If γ contains 1 or more non-terminals, γ is a sentential form

• To get γi from γi–1, expand some NT A ∈ γi–1 by using A →β
— Replace the occurrence of A ∈ γi–1 with β to get γi

— In a leftmost derivation, it would be the first NT A ∈ γi–1

A left-sentential form occurs in a leftmost derivation
A right-sentential form occurs in a rightmost derivation
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Bottom-up Parsing
A bottom-up parser builds a derivation by working from
the input sentence back toward the start symbol S

S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence

To reduce γi  to γi–1 match some rhs β against γi then  replace β
with its corresponding lhs, A.    (assuming the production A→β)

In terms of the parse tree, this is working from leaves to root
• Nodes  with no parent in a partial tree form its upper fringe
• Since each replacement of β with A shrinks the upper fringe,
      we call it a reduction.

The parse tree need not be built, it can be simulated
|parse tree nodes |  =  |terminal symbols | + |reductions |

bottom-up
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Finding Reductions

Consider the simple grammar

And the input string abbcde

The trick is scanning the input and finding the next reduction
The mechanism for doing this must be efficient

1 Goal ! a A B e

2 A ! A b c

3 | b

4 B ! d

Sentential Next Reduction

Form Prod’n Pos’n

abbcde 3 2

a A bcde 2 4

a A de 4 3

a A B e 1 4

Goal — —
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Finding Reductions                              (Handles)

The parser must find a substring β of the tree’s frontier that
matches some production A → β that occurs as one step
in the rightmost derivation                        (⇒ β → A is in RRD)

Informally, we call this substring β a handle

Formally,
A handle of a right-sentential form γ is a pair <A→β,k> where
A→β ∈ P and k is the position in γ of β’s rightmost symbol.

If <A→β,k> is a handle, then replacing β at k with A produces the
right sentential form from which γ is derived in the rightmost
derivation.

Because γ is a right-sentential form, the substring to the right
of a handle contains only terminal symbols

⇒ the parser doesn’t need to scan past the handle       (very far)
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Finding Reductions                              (Handles)

Theorem:
If G is unambiguous, then every right-sentential form has a
unique handle.

Sketch of Proof:
1 G is unambiguous ⇒ rightmost derivation is unique

2 ⇒ a unique production A → β applied to derive γi  from γi–1

3 ⇒ a unique position k at which A→β is applied
4 ⇒ a unique handle <A→β,k>
This all follows from the definitions

If we can find those handles, we can build a derivation!
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Example                                   (a very busy slide)

1 Goal ! Expr

2 Expr ! Expr  + Term

3 | Expr  – Term

4 | Term

5 Term ! Term  * Factor

6 | Term  / Factor

7 | Factor

8 Factor ! number

9 | id

10 | ( Expr )

The expression grammar

Prod’n. Sentential Form Handle 

— Goal — 

1 Expr 1,1 

3 Expr – Term 3,3 

5 Expr –Term * Factor 5,5 

9 Expr – Term * <id,y>  9,5 

7 Expr – Factor * <id,y> 7,3 

8 Expr – <num,2> * <id,y> 8,3 

4 Term – <num,2> * <id,y> 4,1 

7 Factor – <num,2> * <id,y> 7,1 

9 <id,x> – <num,2> * <id,y> 9,1 
 

 

Handles for rightmost derivation of  x – 2 * y

This is the inverse of Figure 3.9  in EaC



COMP 412,  Fall 2002 9Comp 412 Fall 2005

Handle-pruning, Bottom-up Parsers

The process of discovering a handle & reducing it to the
appropriate left-hand side is called handle pruning

Handle pruning forms the basis for a bottom-up parsing method

To construct a rightmost derivation
S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ w

Apply the following simple algorithm
for i ← n to 1 by –1
     Find the handle <Ai →βi , ki > in γi

     Replace βi with Ai to generate γi–1

This takes 2n steps
of course, n is unknown
until the derivation is built
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Shift-reduce Parsing
Shift reduce parsers are easily built and easily understood

A shift-reduce parser is a stack automaton with four actions
• Shift — next word is shifted onto the stack
• Reduce — right end of handle is at top of stack

    Locate left end of handle within the stack
    Pop handle off stack & push appropriate lhs

• Accept — stop parsing & report success
• Error  — call an error reporting/recovery routine

Accept & Error are simple
Shift is just a push and a call to the scanner
Reduce takes |rhs| pops & 1 push

But how do you know when to shift and when to reduce?



COMP 412,  Fall 2002 11Comp 412 Fall 2005

Handle-pruning, Bottom-up Parsers

A simple shift-reduce parser:

push INVALID
token ← next_token( )
repeat until (top of stack = Goal and token = EOF)
     if the top of the stack is a handle A→β 
          then      // reduce β to A
               pop |β| symbols off the stack
               push A onto the stack
          else if (token ≠ EOF)
               then // shift 
                     push token 
                     token ← next_token( )
           else     // need to shift, but out of input 

report an error   

Figure 3.7 in EAC

How do errors show up?
• failure to find a handle
• hitting EOF & needing to
   shift (final else clause)
Either generates an error
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Back to x - 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id

1. Shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce
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Back to x - 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id

1. Shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce
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Back to x - 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id none shift
$ Expr – num * id none shift
$ Expr – num * id

1. Shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce
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Back to x - 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id none shift
$ Expr – num * id none shift
$ Expr – num * id 8,3 red. 8
$ Expr – Factor * id 7,3 red. 7
$ Expr – Term * id

1. Shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce
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Back to x - 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id none shift
$ Expr – num * id none shift
$ Expr – num * id 8,3 red. 8
$ Expr – Factor * id 7,3 red. 7
$ Expr – Term * id none shift
$ Expr – Term *   id none shift
$ Expr – Term * id

1. Shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce
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Back to x - 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id none shift
$ Expr – num * id none shift
$ Expr – num * id 8,3 red. 8
$ Expr – Factor * id 7,3 red. 7
$ Expr – Term * id none shift
$ Expr – Term *   id none shift
$ Expr – Term * id 9,5 red. 9
$ Expr – Term * Factor 5,5 red. 5
$ Expr – Term 3,3 red. 3
$ Expr 1,1 red. 1
$ Goal none accept

1. Shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce

5 shifts +
9 reduces
+ 1 accept
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Example

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact.Term

Term

*

Stack Input Action
$ id – num * id shift
$ id – num * id red. 9
$ Factor – num * id red. 7
$ Term – num * id red. 4
$ Expr – num * id shift
$ Expr – num * id shift
$ Expr – num * id red. 8
$ Expr – Factor * id red. 7
$ Expr – Term * id shift
$ Expr – Term *   id shift
$ Expr – Term * id red. 9
$ Expr – Term * Factor red. 5
$ Expr – Term red. 3
$ Expr red. 1
$ Goal accept
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An Important Lesson about Handles

To be a handle, a substring of a sentential form γ must have
two properties:

— It must match the right hand side β of some rule A → β
— There must be some rightmost derivation from the goal symbol

that produces the sentential form γ with A → β as the last
production applied

• Simply looking for right hand sides that match strings is not
good enough

• Critical Question: How can we know when we have found a
handle without generating lots of different derivations?

— Answer: we use look ahead in the grammar along with tables
produced as the result of analyzing the grammar.

— LR(1) parsers build a DFA that runs over the stack & finds them

Ken’s slides on operator precedence are online
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Extra Slides Start Here
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An Important Lesson about Handles
• To be a handle, a substring of a sentential form γ must have

two properties:
— It must match the right hand side β of some rule A → β

— There must be some rightmost derivation from the goal symbol
that produces the sentential form γ with A → β as the last
production applied

• Simply looking for right hand sides that match strings is not
good enough

• Critical Question: How can we know when we have found a
handle without generating lots of different derivations?

— Answer: we use lookahead in the grammar along with tables
produced as the result of analyzing the grammar.

– There are a number of different ways to do this.
– We will look at two: operator precedence and LR parsing


