
Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

Parsing IV
Bottom-up Parsing

COMP 412
Fall 2005

COMP 412, Fall 2002 2Comp 412 Fall 2005

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

• Start at the root of the parse tree and grow toward leaves
• Pick a production & try to match the input
• Bad “pick” ⇒ may need to backtrack
• Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)

• Start at the leaves and grow toward root
• As input is consumed, encode possibilities in an internal state
• Start in a state valid for legal first tokens
• Bottom-up parsers handle a large class of grammars

COMP 412, Fall 2002 3Comp 412 Fall 2005

Bottom-up Parsing (definitions)

The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

• Each γi is a sentential form
— If γ contains only terminal symbols, γ is a sentence in L(G)
— If γ contains 1 or more non-terminals, γ is a sentential form

• To get γi from γi–1, expand some NT A ∈ γi–1 by using A →β
— Replace the occurrence of A ∈ γi–1 with β to get γi

— In a leftmost derivation, it would be the first NT A ∈ γi–1

A left-sentential form occurs in a leftmost derivation
A right-sentential form occurs in a rightmost derivation

COMP 412, Fall 2002 4Comp 412 Fall 2005

Bottom-up Parsing
A bottom-up parser builds a derivation by working from
the input sentence back toward the start symbol S

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

To reduce γi to γi–1 match some rhs β against γi then replace β
with its corresponding lhs, A. (assuming the production A→β)

In terms of the parse tree, this is working from leaves to root
• Nodes with no parent in a partial tree form its upper fringe
• Since each replacement of β with A shrinks the upper fringe,
 we call it a reduction.

The parse tree need not be built, it can be simulated
|parse tree nodes | = |terminal symbols | + |reductions |

bottom-up

COMP 412, Fall 2002 5Comp 412 Fall 2005

Finding Reductions

Consider the simple grammar

And the input string abbcde

The trick is scanning the input and finding the next reduction
The mechanism for doing this must be efficient

1 Goal ! a A B e

2 A ! A b c

3 | b

4 B ! d

Sentential Next Reduction

Form Prod’n Pos’n

abbcde 3 2

a A bcde 2 4

a A de 4 3

a A B e 1 4

Goal — —

COMP 412, Fall 2002 6Comp 412 Fall 2005

Finding Reductions (Handles)

The parser must find a substring β of the tree’s frontier that
matches some production A → β that occurs as one step
in the rightmost derivation (⇒ β → A is in RRD)

Informally, we call this substring β a handle

Formally,
A handle of a right-sentential form γ is a pair <A→β,k> where
A→β ∈ P and k is the position in γ of β’s rightmost symbol.

If <A→β,k> is a handle, then replacing β at k with A produces the
right sentential form from which γ is derived in the rightmost
derivation.

Because γ is a right-sentential form, the substring to the right
of a handle contains only terminal symbols

⇒ the parser doesn’t need to scan past the handle (very far)

COMP 412, Fall 2002 7Comp 412 Fall 2005

Finding Reductions (Handles)

Theorem:
If G is unambiguous, then every right-sentential form has a
unique handle.

Sketch of Proof:
1 G is unambiguous ⇒ rightmost derivation is unique

2 ⇒ a unique production A → β applied to derive γi from γi–1

3 ⇒ a unique position k at which A→β is applied
4 ⇒ a unique handle <A→β,k>
This all follows from the definitions

If we can find those handles, we can build a derivation!

COMP 412, Fall 2002 8Comp 412 Fall 2005

Example (a very busy slide)

1 Goal ! Expr

2 Expr ! Expr + Term

3 | Expr – Term

4 | Term

5 Term ! Term * Factor

6 | Term / Factor

7 | Factor

8 Factor ! number

9 | id

10 | (Expr)

The expression grammar

Prod’n. Sentential Form Handle

— Goal —

1 Expr 1,1

3 Expr – Term 3,3

5 Expr –Term * Factor 5,5

9 Expr – Term * <id,y> 9,5

7 Expr – Factor * <id,y> 7,3

8 Expr – <num,2> * <id,y> 8,3

4 Term – <num,2> * <id,y> 4,1

7 Factor – <num,2> * <id,y> 7,1

9 <id,x> – <num,2> * <id,y> 9,1

Handles for rightmost derivation of x – 2 * y

This is the inverse of Figure 3.9 in EaC

COMP 412, Fall 2002 9Comp 412 Fall 2005

Handle-pruning, Bottom-up Parsers

The process of discovering a handle & reducing it to the
appropriate left-hand side is called handle pruning

Handle pruning forms the basis for a bottom-up parsing method

To construct a rightmost derivation
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ w

Apply the following simple algorithm
for i ← n to 1 by –1
 Find the handle <Ai →βi , ki > in γi

 Replace βi with Ai to generate γi–1

This takes 2n steps
of course, n is unknown
until the derivation is built

COMP 412, Fall 2002 10Comp 412 Fall 2005

Shift-reduce Parsing
Shift reduce parsers are easily built and easily understood

A shift-reduce parser is a stack automaton with four actions
• Shift — next word is shifted onto the stack
• Reduce — right end of handle is at top of stack

 Locate left end of handle within the stack
 Pop handle off stack & push appropriate lhs

• Accept — stop parsing & report success
• Error — call an error reporting/recovery routine

Accept & Error are simple
Shift is just a push and a call to the scanner
Reduce takes |rhs| pops & 1 push

But how do you know when to shift and when to reduce?

COMP 412, Fall 2002 11Comp 412 Fall 2005

Handle-pruning, Bottom-up Parsers

A simple shift-reduce parser:

push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
 if the top of the stack is a handle A→β
 then // reduce β to A
 pop |β| symbols off the stack
 push A onto the stack
 else if (token ≠ EOF)
 then // shift
 push token
 token ← next_token()
 else // need to shift, but out of input

report an error

Figure 3.7 in EAC

How do errors show up?
• failure to find a handle
• hitting EOF & needing to
 shift (final else clause)
Either generates an error

COMP 412, Fall 2002 12Comp 412 Fall 2005

Back to x - 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id

1. Shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce

COMP 412, Fall 2002 13Comp 412 Fall 2005

Back to x - 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id

1. Shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce

COMP 412, Fall 2002 14Comp 412 Fall 2005

Back to x - 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id none shift
$ Expr – num * id none shift
$ Expr – num * id

1. Shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce

COMP 412, Fall 2002 15Comp 412 Fall 2005

Back to x - 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id none shift
$ Expr – num * id none shift
$ Expr – num * id 8,3 red. 8
$ Expr – Factor * id 7,3 red. 7
$ Expr – Term * id

1. Shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce

COMP 412, Fall 2002 16Comp 412 Fall 2005

Back to x - 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id none shift
$ Expr – num * id none shift
$ Expr – num * id 8,3 red. 8
$ Expr – Factor * id 7,3 red. 7
$ Expr – Term * id none shift
$ Expr – Term * id none shift
$ Expr – Term * id

1. Shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce

COMP 412, Fall 2002 17Comp 412 Fall 2005

Back to x - 2 * y

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id none shift
$ Expr – num * id none shift
$ Expr – num * id 8,3 red. 8
$ Expr – Factor * id 7,3 red. 7
$ Expr – Term * id none shift
$ Expr – Term * id none shift
$ Expr – Term * id 9,5 red. 9
$ Expr – Term * Factor 5,5 red. 5
$ Expr – Term 3,3 red. 3
$ Expr 1,1 red. 1
$ Goal none accept

1. Shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce

5 shifts +
9 reduces
+ 1 accept

COMP 412, Fall 2002 18Comp 412 Fall 2005

Example

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact.Term

Term

*

Stack Input Action
$ id – num * id shift
$ id – num * id red. 9
$ Factor – num * id red. 7
$ Term – num * id red. 4
$ Expr – num * id shift
$ Expr – num * id shift
$ Expr – num * id red. 8
$ Expr – Factor * id red. 7
$ Expr – Term * id shift
$ Expr – Term * id shift
$ Expr – Term * id red. 9
$ Expr – Term * Factor red. 5
$ Expr – Term red. 3
$ Expr red. 1
$ Goal accept

COMP 412, Fall 2002 19Comp 412 Fall 2005

An Important Lesson about Handles

To be a handle, a substring of a sentential form γ must have
two properties:

— It must match the right hand side β of some rule A → β
— There must be some rightmost derivation from the goal symbol

that produces the sentential form γ with A → β as the last
production applied

• Simply looking for right hand sides that match strings is not
good enough

• Critical Question: How can we know when we have found a
handle without generating lots of different derivations?

— Answer: we use look ahead in the grammar along with tables
produced as the result of analyzing the grammar.

— LR(1) parsers build a DFA that runs over the stack & finds them

Ken’s slides on operator precedence are online

COMP 412, Fall 2002 20Comp 412 Fall 2005

Extra Slides Start Here

COMP 412, Fall 2002 21Comp 412 Fall 2005

An Important Lesson about Handles
• To be a handle, a substring of a sentential form γ must have

two properties:
— It must match the right hand side β of some rule A → β

— There must be some rightmost derivation from the goal symbol
that produces the sentential form γ with A → β as the last
production applied

• Simply looking for right hand sides that match strings is not
good enough

• Critical Question: How can we know when we have found a
handle without generating lots of different derivations?

— Answer: we use lookahead in the grammar along with tables
produced as the result of analyzing the grammar.

– There are a number of different ways to do this.
– We will look at two: operator precedence and LR parsing

