Parsing III
 (Top-down parsing: recursive descent \& $L L(1)$)

COMP 412
 Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy \& Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Roadmap (Where are we?)

We set out to study parsing

- Specifying syntax
- Context-free grammars
- Ambiguity \checkmark
- Top-down parsers
- Algorithm \& its problem with left recursion \checkmark
- Left-recursion removal \checkmark
- Predictive top-down parsing
- The LL(1) condition today
- Simple recursive descent parsers today
- Table-driven LL(1) parsers today

Picking the "Right" Production

If it picks the wrong production, a top-down parser may backtrack
Alternative is to look ahead in input \& use context to pick correctly

How much lookahead is needed?

- In general, an arbitrarily large amount
- Use the Cocke-Younger, Kasami algorithm or Earley's algorithm

Fortunately,

- Large subclasses of CFGs can be parsed with limited lookahead
- Most programming language constructs fall in those subclasses

Among the interesting subclasses are $L L(1)$ and $L R(1)$ grammars

Predictive Parsing

Basic idea
Given $A \rightarrow \alpha \mid \beta$, the parser should be able to choose between $\alpha \& \beta$

FIRST sets
For some rhs $\alpha \in G$, define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α

That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} \underline{x} \gamma$, for some γ

We will defer the problem of how to compute FIRST sets until we look at the $L R(1)$ table construction algorithm

Predictive Parsing

Basic idea
Given $A \rightarrow \alpha \mid \beta$, the parser should be able to choose between $\alpha \& \beta$

FIRST sets
For some rhs $\alpha \in G$, define $\operatorname{FIRst}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α

That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} \underline{x} \gamma$, for some γ

The LL(1) Property
If $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like

$$
\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\varnothing
$$

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

Predictive Parsing

What about ε-productions?
\Rightarrow They complicate the definition of $\operatorname{LL}(1)$
If $A \rightarrow \alpha$ and $A \rightarrow \beta$ and $\varepsilon \in \operatorname{FIRST}(\alpha)$, then we need to ensure that $\operatorname{FIRST}(\beta)$ is disjoint from $\operatorname{FOLLOW}(A)$, too, where

FOLLOW $(A)=$ the set of terminal symbols that can immediately follow A in a sentential form

Define $\operatorname{FIRST}^{+}(A \rightarrow \alpha)$ as

- $\operatorname{First}(\alpha) \cup \operatorname{FOLLOW}(A)$, if $\varepsilon \in \operatorname{FIRST}(\alpha)$
- First(α), otherwise

Then, a grammar is LL(1) iff $A \rightarrow \alpha$ and $A \rightarrow \beta$ implies $\operatorname{FIRST}^{+}(A \rightarrow \alpha) \cap \operatorname{FIRST}^{+}(A \rightarrow \beta)=\varnothing$

Predictive Parsing

Given a grammar that has the LL(1) property

- Can write a simple routine to recognize each Ihs
- Code is both simple \& fast

Consider $A \rightarrow \beta_{1}\left|\beta_{2}\right| \beta_{3}$, with
$\operatorname{FIRST}^{+}\left(A \rightarrow \beta_{\mathrm{i}}\right) \cap \operatorname{FIRST}^{+}\left(A \rightarrow \beta_{\mathrm{j}}\right)=\varnothing$ if $\mathrm{i} \neq \mathrm{j}$

```
/* find an A */
if (current_word }\in\operatorname{FIRST}(A->\mp@subsup{\beta}{1}{})
    find a }\mp@subsup{\beta}{1}{}\mathrm{ and return true
else if (current_word }\in\operatorname{FIRST}(A->\mp@subsup{\beta}{2}{})\mathrm{ )
    find a }\mp@subsup{\beta}{2}{}\mathrm{ and return true
else if (current_word }\in\operatorname{FIRST}(A->\mp@subsup{\beta}{3}{})\mathrm{ )
    find a }\mp@subsup{\beta}{3}{}\mathrm{ and return true
else
    report an error and return false
```

Grammars with the LL(1) property are called predictive grammars because the parser can "predict" the correct expansion at each point in the parse.

Parsers that capitalize on the LL(1) property are called predictive parsers.

One kind of predictive parser is the recursive descent parser.

Recursive Descent Parsing

Recall the expression grammar, after transformation

1	Goal	\rightarrow	Expr
2	Expr	\rightarrow	Term Expr
3	Expr $^{\prime}$	\rightarrow	+ Term Expr
4		\mid	- Term Expr
5		\mid	ε
6	Term	\rightarrow	Factor Term'
7	Term	\rightarrow	* Factor Term
8		\mid	/ Factor Term
9		\mid	ε
10	Factor	\rightarrow	$\underline{\text { number }}$
11		\mid	$\underline{\text { id }}$
12		\mid	(Expr $)$

This produces a parser with six mutually recursive routines:

- Goal
- Expr
- EPrime
- Term
- TPrime
- Factor

Each recognizes one NT or T
The term descent refers to the direction in which the parse tree is built.

Recursive Descent Parsing

(Procedural)

A couple of routines from the expression parser

```
Goal( )
    token \leftarrow next_token();
    if (Expr() = true & token = EOF)
        then next compilation step;
        else
            report syntax error;
            return false;
Expr()
    if (Term() = false)
        then return false;
        else return Eprime();
looking for Number, Identifier,
or "(", found token instead, or
failed to find Expr or ")" after "("
```

Factor()
if (token = Number) then token \leftarrow next_token();
return true;
else if (token = Identifier) then
token \leftarrow next_token();
return true;
else if (token = Lparen)
token \leftarrow next_token();
if (Expr() = true \& token = Rparen) then token \leftarrow next_token(); return true;
// fall out of if statement
report syntax error; return false;

EPrime, Term, \& TPrime follow the same basic lines (Figure 3.7, EAC)

Recursive Descent Parsing

To build a parse tree:

- Augment parsing routines to build nodes
- Pass nodes between routines using a stack
- Node for each symbol on rhs
- Action is to pop rhs nodes, make them children of Ihs node, and push this subtree

To build an abstract syntax tree

- Build fewer nodes

```
Expr()
    result }\leftarrow true
    if (Term() = false)
        then return false;
        else if (EPrime() = false)
            then result }\leftarrow false
            else
            build an Expr node
            pop EPrime node
                pop Term node
            make EPrime & Term
                    children of Expr
        push Expr node
```

 return result;
 - Put them together in a different order

Left Factoring

What if my grammar does not have the LL(1) property?
\Rightarrow Sometimes, we can transform the grammar
The Algorithm

```
\forallA\inNT,
    find the longest prefix a that occurs in two
            or more right-hand sides of A
    if \alpha\not=\varepsilon then replace all of the A productions,
        A ->\alpha\mp@subsup{\beta}{1}{}|\alpha\mp@subsup{\beta}{2}{}|\ldots|\alpha\mp@subsup{\beta}{n}{}|\gamma,
    with
        A ->\alphaZ|
        Z->\mp@subsup{\beta}{1}{}|\mp@subsup{\beta}{2}{}|\ldots|
    where Z is a new element of NT
Repeat until no common prefixes remain
```


Left Factoring

A graphical explanation for the same idea

Consider the following fragment of the expression grammar

```
Factor }->\mathrm{ Identifier
    | Identifier [ ExprList ]
    | Identifier (ExprList )
```

After left factoring, it becomes

Factor	\rightarrow	Identifier Arguments
Arguments	\rightarrow	$[$ ExprList $]$
	\mid	$($ ExprList $)$
	\mid	ε

```
FIRST}(rh\mp@subsup{s}{1}{})={\mathrm{ Identifier }
FIRST}(rh\mp@subsup{s}{2}{})={\mathrm{ Identifier }
FIRST (rhs) = { Identifier }
```

$\operatorname{FIRST}\left(r h s_{1}\right)=\{$ Identifier $\}$
$\operatorname{FIRST}\left(r h s_{2}\right)=\{[\}$
$\operatorname{FIRST}\left(r h s_{3}\right)=\{(\}$
FIRST(rhs ${ }_{4}$) = FOLLOW(Factor)
\Rightarrow It has the $L L(1)$ property

This form has the same syntax, with the $L L(1)$ property

Left Factoring

Graphically

becomes ...

Left Factoring

Question

By eliminating left recursion and left factoring, can we transform an arbitrary CFG to a form where it meets the LL(1) condition? (and can be parsed predictively with a single token lookahead?)

Answer

Given a CFG that doesn't meet the $L L(1)$ condition, it is undecidable whether or not an equivalent $L L(1)$ grammar exists.

Example

$$
\left\{a^{n} 0 b^{n} \mid n \geq 1\right\} \cup\left\{a^{n} 1 b^{2 n} \mid n \geq 1\right\} \text { has no } L L(1) \text { grammar }
$$

Language that Cannot Be LL(1)

Example

$$
\left\{a^{n} 0 b^{n} \mid n \geq 1\right\} \cup\left\{a^{n} 1 b^{2 n} \mid n \geq 1\right\} \text { has no } L L(1) \text { grammar }
$$

$$
\begin{aligned}
G & \rightarrow \underline{a} A \underline{b} \\
& \mid \underline{a} B \underline{b b} \\
A \rightarrow & \underline{a} A \underline{b} \\
& \mid \underline{0} \\
B \rightarrow & \underline{a} B \underline{b b} \\
& \underline{1}
\end{aligned}
$$

Problem: need an unbounded number of a characters before you can determine whether you are in the A group or the B group.

Recursive Descent (Summary)

1. Build FIRSt (and Follow) sets
2. Massage grammar to have $\operatorname{LL}(1)$ condition
a. Remove left recursion
b. Left factor it
3. Define a procedure for each non-terminal
a. Implement a case for each right-hand side
b. Call procedures as needed for non-terminals
4. Add extra code, as needed
a. Perform context-sensitive checking
b. Build an IR to record the code

Can we automate this process?

FIRST and Follow Sets

FIRST(α)
For some $\alpha \in(T \cup N T)^{\star}$, define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α
That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} \underline{x} \gamma$, for some γ
Follow(A)
For some $A \in N T$, define Follow (A) as the set of symbols that can occur immediately after A in a valid sentential form
Follow $(S)=\{$ EOF $\}$, where S is the start symbol
To build FIRST sets, we need Follow sets ...

Building Top-down Parsers

Given an LL(1) grammar, and its FIRST \& Follow sets ...

- Emit a routine for each non-terminal
- Nest of if-then-else statements to check alternate rhs's
- Each returns true on success and throws an error on false
- Simple, working (, perhaps ugly,) code
- This automatically constructs a recursive-descent parser

Improving matters
I don't know of a
system that does this

- Nest of if-then-else statements may be slow
- Good case statement implementation would be better
- What about a table to encode the options?
- Interpret the table with a skeleton, as we did in scanning

Building Top-down Parsers

Strategy

- Encode knowledge in a table
- Use a standard "skeleton" parser to interpret the table

Example

- The non-terminal Factor has three expansions
- (Expr) or Identifier or Number
- Table might look like:

Terminal Symbols

LL(1) Skeleton Parser

```
token \leftarrow next_token()
push EOF onto Stack
push the start symbol, S, onto Stack
TOS \leftarrow top of Stack
loop forever
    if TOS = EOF and token = EOF then
        break & report success «
        else if TOS is a terminal then
            if TOS matches token then
                    pop Stack // recognized TOS
            token \leftarrow next_token()
        else report error looking for TOS
        else // TOS is a non-terminal
        if TABLE[TOS,token] is A->\mp@subsup{B}{1}{}\mp@subsup{B}{2}{}\ldots\mp@subsup{B}{k}{}}\mathrm{ then
            pop Stack // get rid of A
            push \mp@subsup{B}{k}{},\mp@subsup{B}{k-1}{},\ldots,\mp@subsup{B}{1}{} // in that order
        else report error expanding TOS
    TOS \leftarrow top of Stack
```


Building Top Down Parsers

Building the complete table

- Need a row for every NT \& a column for every T
- Need a table-driven interpreter for the table

Building Top Down Parsers

Building the complete table

- Need a row for every NT \& a column for every T
- Need an algorithm to build the table

Filling in TABLE[X,y], $X \in N T, y \in T$

1. entry is the rule $X \rightarrow \beta$, if $y \in \operatorname{FIRST}^{+}(X \rightarrow \beta)$
2. entry is error if rule 1 does not define

If any entry has more than one rule, G is not $L L(1)$

This is the $L L(1)$ table construction algorithm

LL(1) Expression Parser

1	Goal	\rightarrow	Expr
2	Expr	\rightarrow	Term Expr
3	Expr'	\rightarrow	+ Term Expr'
4		\mid	- Term Expr
5		\mid	ε
6	Term	\rightarrow	Factor Term
7	Term	\rightarrow	* Factor Term
8		\mid	$/$ Factor Term
9		\mid	ε
10	Factor	\rightarrow	$\underline{\text { id }}$
11		\mid	$\underline{\text { number }}$
12		\mid	(Expr 2

$\operatorname{FIRST}($ Goal $)=\operatorname{FIRST}($ Expr $)=$ $\operatorname{FIRST}($ Term $)=\operatorname{FIRST}($ Factor $)=$
\{ id, number, (\}
$\operatorname{FIRST}\left(E x p r^{\prime}\right)=\{+,-, \varepsilon\}$
$\operatorname{FIRST}\left(\right.$ Term $\left.^{\prime}\right)=\{*, l, \varepsilon\}$
FOLLOW (Goal) $=\{$ EOF $\}$
FOLLOW (Expr) $=\{2$, EOF $\}$
FOLLOW $\left(E x p r^{\prime}\right)=\{2$, EOF $\}$
FOLLOW (Term) $=\{+,-, 2$, EOF $\}$
FOLLOW (Term' $)=\{+,-$, , EOF $\}$
FOLLOW(Factor) $=$
$\{+,-, *, 1,2$, EOF $\}$

LL(1) Expression Parsing Table

	+	-	$*$	$/$	Id	Num	$($	$)$	EOF
Goal	-	-	-	-	1	1	1	-	-
Expr	-	-	-	-	2	2	2	-	-
Expr'	3	4	-	-	-	-	-	5	5
Term	-	-	-	-	6	6	6	-	-
Term'	9	9	7	8	-	-	-	9	9
Factor	-	-	-	-	10	11	12	-	-

