

Lexical Analysis: DFA Minimization & Wrap Up

COMP 412 Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Automating Scanner Construction

 $RE \rightarrow NFA$ (Thompson's construction) \checkmark

- Build an NFA for each term
- Combine them with ε -moves

NFA \rightarrow DFA (subset construction) \checkmark

- Build the simulation
- DFA \rightarrow Minimal DFA (today)
- Hopcroft's algorithm

 $DFA \rightarrow RE$ (not really part of scanner construction)

- All pairs, all paths problem
- Union together paths from so to a final state

The Cycle of Constructions

DFA Minimization

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

The Big Picture

- Discover sets of equivalent states in the DFA
- Represent each such set with a single state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states (DFA)
- α -transitions to distinct sets \Rightarrow states must be in distinct sets

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states (DFA)
- α -transitions to distinct sets \Rightarrow states must be in distinct sets
- A partition P of S
- A collection of sets P s.t. each $s \in S$ is in exactly one $p_i \in P$
- The algorithm iteratively partitions the DFA's states

Details of the algorithm

- Group states into maximal size sets, optimistically
- Iteratively subdivide those sets, based on transition graph
- States that remain grouped together are equivalent

Initial partition, P_0 , has two sets: {F} & {S-F} (D = (S, \Sigma, \delta, s_0, F)) final states others

Splitting a set ("partitioning a set by \underline{a} ")

- Assume $s_a \& s_b \in p_i$, and $\delta(s_a,\underline{a}) = s_x$, $\& \delta(s_b,\underline{a}) = s_y$
- If $s_x \& s_y$ are not in the same set, then p_i must be split - s_a has transition on a, s_b does not $\Rightarrow \underline{a}$ splits p_i
- One state in the final DFA cannot have two transitions on <u>a</u>

The algorithm partitions S around α

in a future iteration.

This is a fixed-point algorithm!

DFA Minimization

The algorithm

 $P \leftarrow \{F, \{S-F\}\}$ while (P is still changing) $T \leftarrow \{\}$ for each $p_i \in P$ for each $\alpha \in \Sigma$ partition p_i by α into p_{j} , and p_{k} *if p^{<i>i*} *splits* $T \leftarrow T \cup p_j \cup p_k$ else $T \leftarrow T \cup p_i$ if $T \neq P$ then $P \leftarrow T$

Why does this work?

- Partition $P \in 2^{S}$
- Start off with 2 subsets of S: {F} and {S-F}
- The while loop takes Pⁱ→Pⁱ⁺¹ by splitting 1 or more sets
- *Pⁱ⁺¹* is at least one step closer
 to the partition with |S| sets
- Maximum of |*S*| splits

Note that

- Partitions are <u>never</u> combined
- Initial partition ensures that final states remain final states

Refining the algorithm

- As written, it examines every $p_i \in P$ on each iteration
 - This strategy entails a lot of unnecessary work
 - Only need to examine p_i if some T, reachable from p_i , has split
- Reformulate the algorithm using a "worklist"
 - Start worklist with initial partition, F and {S-F}
 - When it splits p_i into p_1 and p_2 , place p_2 on worklist

This version looks at each $p_i \in P$ many fewer times

• Well-known, widely used algorithm due to John Hopcroft


```
W \leftarrow \{F, S-F\}; P \leftarrow \{F, S-F\}; //W \text{ is the worklist, } P \text{ the current partition}
while (W is not empty) do begin
      select and remove s from W; // s is a set of states
      for each \alpha in \Sigma do begin
            let I_{\alpha} \leftarrow \delta_{\alpha}^{-1}(s); // I_{\alpha} is set of all states that can reach s on \alpha
            for each R in P such that R \cap I_{\alpha} is not empty
               and R is not contained in I_{\alpha} do begin
                  partition R into R_1 and R_2 such that R_1 \leftarrow R \cap I_\alpha; R_2 \leftarrow R - R_1;
                  replace R in P with R_1 and R_2;
                  if R \in W then replace R with R_1 in W and add R_2 to W;
                  else if |R_1| \leq |R_2|
                         then add add R_1 to W;
                         else add R_2 to W;
            end
      end
end
```


How does the worklist algorithm ensure that p_k eventually splits around Q & R ?

Subtle point: either Q or R (or both) must already be on the worklist. (Q & R have split from {S-F}.)

Thus, it can split p_i around one state (T) & add either p_j or p_k to the worklist. ¹³

Remember $(\underline{a} | \underline{b})^* \underline{abb}$? (from last lecture) $(q_0) \xrightarrow{\epsilon} (q_1) \xrightarrow{\underline{a} | \underline{b}} (q_2) \xrightarrow{\underline{b}} (q_3) \xrightarrow{\underline{b}} (q_4)$

Our first

Applying the subset construction:

State	Contains	ε-closure(ε-closure(
		move(s _i , <u>a</u>))	move(s _i , <u>b</u>))
\boldsymbol{s}_{0}	\mathbf{q}_0 , \mathbf{q}_1	q ₁ , q ₂	q ₁
S ₁	q ₁ , q ₂	q ₁ , q ₂	q ₁ , q ₃
S ₂	q ₁	q ₁ , q ₂	q ₁
S 3	q ₁ , q ₃	q ₁ , q ₂	q ₁ , q ₄
S ₄	q ₁ , q ₄	q ₁ , q ₂	q ₁
	State S0 S1 S2 S3 S4	State Contains S_0 q_0, q_1 S_1 q_1, q_2 S_2 q_1 S_3 q_1, q_3 S_4 q_1, q_4	StateContains $move(s_i, a)$) S_0 q_0, q_1 q_1, q_2 S_1 q_1, q_2 q_1, q_2 S_2 q_1 q_1, q_2 S_3 q_1, q_3 q_1, q_2 S_4 q_1, q_4 q_1, q_2

contains q₄ (final state)

Iteration 3 adds nothing to *S*, so the algorithm halts

Comp 412 Fall 2005

A Detailed Example

The DFA for $(\underline{a} | \underline{b})^* \underline{abb}$

- Not much bigger than the original NFA
- All transitions are deterministic
- Use same code skeleton as before

A Detailed Example

(DFA Minimization)

	Current Partition	Worklist	5	Split on <u>a</u>	Split on <u>b</u>
Po	{\$4} {\$0,\$1,\$2,\$3}	{\$4} {\$0,\$1,\$2,\$3}	{s ₄ }	none	none
Po	{\$4}{\$ ₀ ,\$ ₁ ,\$ ₂ ,\$ ₃ }	{\$0,\$1,\$2,\$3}	{\$0,\$1,\$2,\$3}	none	{s ₀ , s ₁ , s ₂ } {s ₃ }
<i>P</i> ₁	{\$4}{\$3}{\$0,\$1,\$2}	{\$ ₃ }	{ s ₃ }	none	{\$0, \$2}{\$1}
P ₂	(S ₄) { S ₃ } { S ₁ } { S ₀ , S ₂ }	{s ₁ }	{s ₁ }	none	none

Comp 412 Fall 2005

<u>a</u>

b

 S_1

s₂

<u>a</u>

b

· **s**____

First, the subset construction:

		ε-closure(move(s,*))				
	NFA states	<u>a</u>	<u>b</u>	<u>c</u>		
S ₀	\boldsymbol{q}_{o}	$q_1, q_2, q_3, q_4, q_6, q_9$	none	none		
S ₁	$q_1, q_2, q_3, q_4, q_6, q_9$	none	q 5, q 8, q 9, q 3, q 4, q 6	q ₇ , q ₈ , q ₉ , q ₃ , q ₄ , q ₆		
S ₂	$q_5, q_8, q_9, q_3, q_4, q_6$	none	S ₂	S ₃		
S 3	$q_7, q_8, q_9, q_9, q_3, q_4, q_6$	nòne	S ₂	S ₃		
	Final states					

Comp 412 Fall 2005

To produce the minimal DFA

In lecture 5, we observed that a human would design a simpler automaton than Thompson's construction & the subset construction did.

Minimizing that DFA produces the one that a human would design!

Abbreviated Register Specification

Start with a regular expression r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

The Cycle of Constructions

DFA

19

Abbreviated Register Specification

The subset construction builds

This is a DFA, but it has a lot of states ...

The Cycle of Constructions

Comp 412 Fall 2005

Abbreviated Register Specification

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

The Cycle of Constructions

→RE →NFA →DFA ์ minimal **DFA**

Comp 412 Fall 2005

Limits of Regular Languages

Not all languages are regular RL's \subset CFL's \subset CSL's

You cannot construct DFA's to recognize these languages

- L = { p^kq^k } (parenthesis languages)
- $L = \{ w c w^r \mid w \in \Sigma^* \}$

Neither of these is a regular language

(nor an RE)

But, this is a little subtle. You <u>can</u> construct DFA's for

- Strings with alternating 0's and 1's $(\epsilon \mid 1)(01)^*(\epsilon \mid 0)$
- Strings with and even number of 0's and 1's See Homework 1!

RE's can count bounded sets and bounded differences

Limits of Regular Languages

Advantages of Regular Expressions

- Simple & powerful notation for specifying patterns
- Automatic construction of fast recognizers
- Many kinds of syntax can be specified with REs

Example — an expression grammar

 $Term \rightarrow [a-zA-Z]([a-zA-Z] | [0-9])^*$

 $Op \rightarrow \pm |\underline{-}| \underline{*} |\underline{/}$

 $Expr \rightarrow (Term Op)^* Term$

Of course, this would generate a DFA ...

If REs are so useful ... Why not use them for everything?

Table-Driven Versus Direct-Coded Scanners

Table-driven recognizers use indexing

- *index* Read (& classify) the next character
- *index* Select the case using *action()*
 - Find the next state

index

- *register* Assign to the state variable
 - Branch back to the top

```
state \leftarrow s_{0;}

while (state <sup>1</sup> <u>exit</u>)

state \leftarrow d(state,char);

perform (action(state,char));

char \leftarrow next character;
```

Alternative strategy: direct coding

- Encode state in the program counter
 - Each state is a separate piece of code
- Do transition tests locally and directly branch
- Generate ugly, spaghetti-like code
- More efficient than table driven strategy
 - Fewer memory operations, might have more branches

Building Faster Scanners from the DFA

A direct-coded recognizer for \underline{r} Digit Digit*

 $goto s_{0};$ $s_{0}: word \leftarrow \emptyset;$ $char \leftarrow next character;$ if (char = 'r') $then goto s_{1};$ $else goto s_{e};$ $s_{1}: word \leftarrow word + char;$ $char \leftarrow next character;$ $if ('0' \leq char \leq '9')$ $then goto s_{2};$ $else goto s_{e};$

 $s2: word \leftarrow word + char;$ $char \leftarrow next character;$ $if ('0' \leq char \leq '9')$ $then goto s_{2};$ else if (char = eof) then report success; $else goto s_{e};$ $s_{e}: print error message;$ return failure;

- Many fewer operations per character
- Almost no memory operations
- Even faster with careful use of fall-through cases

The point

- Implementer writes down the regular expressions
- Scanner generator builds NFA, DFA, minimal DFA, and then writes out the (table-driven or direct-coded) code
- This reliably produces fast, robust scanners

For most modern language features, this works

- You should think twice before introducing a feature that defeats a DFA-based scanner
- The ones we've seen (e.g., insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting