
Lexical Analysis:
DFA Minimization & Wrap Up

COMP 412
Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

COMP 412, Fall 2002 2Comp 412 Fall 2005

Automating Scanner Construction

RE→NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with ε-moves

NFA →DFA (subset construction)
• Build the simulation

DFA →Minimal DFA (today)

• Hopcroft’s algorithm

DFA →RE (not really part of scanner construction)

• All pairs, all paths problem
• Union together paths from s0 to a final state

minimal
DFA

RE NFA DFA

The Cycle of Constructions

COMP 412, Fall 2002 3Comp 412 Fall 2005

DFA Minimization

The Big Picture

• Discover sets of equivalent states

• Represent each such set with just one state

COMP 412, Fall 2002 4Comp 412 Fall 2005

DFA Minimization

The Big Picture

• Discover sets of equivalent states in the DFA

• Represent each such set with a single state

Two states are equivalent if and only if:

• The set of paths leading to them are equivalent

• ∀ α ∈ Σ, transitions on α lead to equivalent states (DFA)

• α-transitions to distinct sets ⇒ states must be in distinct sets

COMP 412, Fall 2002 5Comp 412 Fall 2005

DFA Minimization

The Big Picture

• Discover sets of equivalent states

• Represent each such set with just one state

Two states are equivalent if and only if:

• The set of paths leading to them are equivalent

• ∀ α ∈ Σ, transitions on α lead to equivalent states (DFA)

• α-transitions to distinct sets ⇒ states must be in distinct sets

A partition P of S
• A collection of sets P s.t. each s ∈ S is in exactly one pi ∈ P
• The algorithm iteratively partitions the DFA’s states

COMP 412, Fall 2002 6Comp 412 Fall 2005

DFA Minimization

Details of the algorithm

• Group states into maximal size sets, optimistically
• Iteratively subdivide those sets, based on transition graph

• States that remain grouped together are equivalent

Initial partition, P0 , has two sets: {F} & {S-F} (D =(S,Σ,δ,s0,F))

Splitting a set (“partitioning a set by a”)

• Assume sa & sb ∈ pi, and δ(sa,a) = sx, & δ(sb,a) = sy

• If sx & sy are not in the same set, then pi must be split
— sa has transition on a, sb does not ⇒ a splits pi

• One state in the final DFA cannot have two transitions on a

final states others

COMP 412, Fall 2002 7Comp 412 Fall 2005

Key Idea: Splitting S around α

S

Tα

The algorithm partitions S around α

Original set S

α

α S has transitions
on α to R, Q, & T

R

Q

COMP 412, Fall 2002 8Comp 412 Fall 2005

Key Idea: Splitting pi around α

T

Original set pi

pj

pk

Could we split pk further?
(say, between Q & R?)

Yes, but doing so does
not help asymptotically.

The algorithm will split pk
in a future iteration.

pk is everything
in pi - pj R

α

Q

α

α

COMP 412, Fall 2002 9Comp 412 Fall 2005

DFA Minimization

The algorithm

P ← { F, {S-F}}
while (P is still changing)
 T ← { }
 for each pi ∈ P
 for each α ∈ Σ
 partition pi by α
 into pj, and pk

 if pi splits
 T ← T ∪ pj ∪ pk
 else
 T ← T ∪ pi

 if T ≠ P then
 P ← T

Why does this work?
• Partition P ∈ 2S

• Start off with 2 subsets of S:
{F} and {S-F}

• The while loop takes Pi→Pi+1 by
splitting 1 or more sets

• Pi+1 is at least one step closer
to the partition with |S | sets

• Maximum of |S | splits
Note that
• Partitions are never combined
• Initial partition ensures that

final states remain final states

This is a fixed-point algorithm!

COMP 412, Fall 2002 10Comp 412 Fall 2005

DFA Minimization

Refining the algorithm

• As written, it examines every pi ∈ P on each iteration
— This strategy entails a lot of unnecessary work

— Only need to examine pi if some T, reachable from pi, has split

• Reformulate the algorithm using a “worklist”
— Start worklist with initial partition, F and {S-F}

— When it splits pi into p1 and p2, place p2 on worklist

This version looks at each pi ∈ P many fewer times

• Well-known, widely used algorithm due to John Hopcroft

COMP 412, Fall 2002 11Comp 412 Fall 2005

Key Idea: Splitting S around α

Iα Sα

This part must have an α-transition to
one or more other states in one or more
other partitions.
Otherwise, it does not split!

Find partition I that has an α-transition into S

R

COMP 412, Fall 2002 12Comp 412 Fall 2005

Hopcroft's Algorithm

W ← {F, S-F}; P ← {F, S-F}; // W is the worklist, P the current partition

while (W is not empty) do begin
select and remove s from W; // s is a set of states
for each α in Σ do begin

 let I α← δα–1(s); // Iα is set of all states that can reach s on α

for each R in P such that R ∩Iα is not empty
 and R is not contained in Iα do begin

partition R into R1 and R2 such that R1 ← R ∩Iα ; R2 ← R – R1;
replace R in P with R1 and R2 ;

 if R ∈ W then replace R with R1 in W and add R2 to W ;
 else if |R1| ≤ |R2 |

then add add R1 to W ;
else add R2 to W ;

end
end

end

COMP 412, Fall 2002 13Comp 412 Fall 2005

Key Idea: Splitting pi around α

T

Original set pi

pj

pk
How does the worklist
algorithm ensure that pk
eventually splits around
Q & R ?

pk is everything
in pi - pj R

α

Q

α

α

Subtle point: either Q or R
(or both) must already be
on the worklist. (Q & R
have split from {S-F}.)

Thus, it can split pi around
one state (T) & add either
pj or pk to the worklist.

COMP 412, Fall 2002 14Comp 412 Fall 2005

A Detailed Example

Remember (a | b)* abb ? (from last lecture)

Applying the subset construction:

Iteration 3 adds nothing to S, so the algorithm halts

a | b

q0 q1 q4 q2 q3

ε a bb

Iter. State Contains
!-closure(

move(si,a))

!-closure(

move(si,b))

0 s0 q0, q1 q1, q2 q1

1 s1 q1, q2 q1, q2 q1, q3

s2 q1 q1, q2 q1

2 s3 q1, q3 q1, q2 q1, q4

3 s4 q1, q4 q1, q2 q1

Our first
NFA

contains q4
(final state)

COMP 412, Fall 2002 15Comp 412 Fall 2005

A Detailed Example

The DFA for (a | b)* abb

• Not much bigger than the original NFA

• All transitions are deterministic

• Use same code skeleton as before

s0

a
s1

b

s3

b
s4

s2

a

b

b

a

a

a

b

! a b

s0 s1 s2

s1 s1 s3

s2 s1 s2

s3 s1 s4

s4 s1 s2

COMP 412, Fall 2002 16Comp 412 Fall 2005

A Detailed Example (DFA Minimization)

Current

Partition
Worklist s Split on a Split on b

P0 {s4} {s0,s1,s2,s3}
{s4}

{s0,s1,s2,s3}
{s4} none none

P0 {s4}{s0,s1,s2,s3} {s0,s1,s2,s3} {s0,s1,s2,s3} none
{s0, s1, s2}

{s3}

P1 {s4}{s3}{s0,s1,s2} {s3} {s3} none {s0, s2}{s1}

P2 {s4}{s3}{s1}{s0,s2} {s1} {s1} none none

s0
a s1

b

s3
b s4

s2

a

b

b

a

a

a

b

s0 , s2
a s1

b

s3
b s4

b

a

a

a

b

final state

COMP 412, Fall 2002 17Comp 412 Fall 2005

DFA Minimization

What about a (b | c)* ?

First, the subset construction:

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε

ε ε

ε ε

ε ε

!-closure(move(s,*))

NFA states a b c

s0 q0 q1, q2, q3,
 q4, q6, q9

none none

s1 q1, q2, q3,
q4, q6, q9

none q5, q8, q9,
q3, q4, q6

q7, q8, q9,
q3, q4, q6

s2 q5, q8, q9,
q3, q4, q6

none s2 s3

s3 q7, q8, q9,
q3, q4, q6

none s2 s3

s3

s2

s0 s1

c

b
a

b

b

c

c

Final states

COMP 412, Fall 2002 18Comp 412 Fall 2005

DFA Minimization

Then, apply the minimization algorithm

To produce the minimal DFA

s3

s2

s0 s1

c

b
a

b

b

c

c

Split on

Current Partition a b c

P0 { s1, s2, s3} {s0} none none none

s0 s1

a

b | c

In lecture 5, we observed that a human
would design a simpler automaton than
Thompson’s construction & the subset
construction did.

Minimizing that DFA produces the one
that a human would design!

final states

COMP 412, Fall 2002 19Comp 412 Fall 2005

Abbreviated Register Specification

Start with a regular expression
r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

minimal
DFA

RE NFA DFA

The Cycle of Constructions

COMP 412, Fall 2002 20Comp 412 Fall 2005

Abbreviated Register Specification

Thompson’s construction produces
r 0

r 1

r 2

r 8

r 9

… …

s0 sf

ε

ε

ε

ε

ε

ε

εε
ε

ε

ε

ε ε

ε
ε

ε

ε

ε

ε
ε

…

minimal
DFA

RE NFA DFA

The Cycle of Constructions

To make it fit, we’ve eliminated the ε
-transition between “r” and “0”.

COMP 412, Fall 2002 21Comp 412 Fall 2005

Abbreviated Register Specification

The subset construction builds

This is a DFA, but it has a lot of states …

r
0

sf0

s0

sf11
sf22

sf9

sf8

…
9

8

minimal
DFA

RE NFA DFA

The Cycle of Constructions

COMP 412, Fall 2002 22Comp 412 Fall 2005

Abbreviated Register Specification

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

rs0 sf

0,1,2,3,4,
5,6,7,8,9

minimal
DFA

RE NFA DFA

The Cycle of Constructions

COMP 412, Fall 2002 23Comp 412 Fall 2005

Limits of Regular Languages
Not all languages are regular

RL’s ⊂ CFL’s ⊂ CSL’s

You cannot construct DFA’s to recognize these languages
• L = { pkqk } (parenthesis languages)
• L = { wcwr | w ∈ Σ*}
Neither of these is a regular language (nor an RE)

But, this is a little subtle. You can construct DFA’s for
• Strings with alternating 0’s and 1’s

(ε | 1) (01)* (ε | 0)

• Strings with and even number of 0’s and 1’s
See Homework 1!

RE’s can count bounded sets and bounded differences

COMP 412, Fall 2002 24Comp 412 Fall 2005

Limits of Regular Languages
Advantages of Regular Expressions
• Simple & powerful notation for specifying patterns
• Automatic construction of fast recognizers
• Many kinds of syntax can be specified with REs

Example — an expression grammar
Term → [a-zA-Z] ([a-zA-Z] | [0-9])*

Op → + | - | ∗ | /
Expr → (Term Op)* Term

Of course, this would generate a DFA …

If REs are so useful …
Why not use them for everything?

COMP 412, Fall 2002 25Comp 412 Fall 2005

Table-Driven Versus Direct-Coded Scanners
Table-driven recognizers use indexing
• Read (& classify) the next character
• Select the case using action()
• Find the next state
• Assign to the state variable
• Branch back to the top

Alternative strategy: direct coding
• Encode state in the program counter

— Each state is a separate piece of code
• Do transition tests locally and directly branch
• Generate ugly, spaghetti-like code
• More efficient than table driven strategy

— Fewer memory operations, might have more branches

state ← s0 ;
while (state ¹ exit)
 state ← d(state,char);
 perform (action(state,char));
 char ← next character;

index
index
index
register

COMP 412, Fall 2002 26Comp 412 Fall 2005

Building Faster Scanners from the DFA
A direct-coded recognizer for r Digit Digit*

• Many fewer operations per character
• Almost no memory operations
• Even faster with careful use of fall-through cases

 goto s0;
s0: word ← Ø;
 char ← next character;
 if (char = ‘r’)
 then goto s1;
 else goto se;
s1: word ← word + char;
 char ← next character;
 if (‘0’ ≤ char ≤ ‘9’)
 then goto s2;
 else goto se;

s2: word ← word + char;
 char ← next character;
 if (‘0’ ≤ char ≤ ‘9’)
 then goto s2;
 else if (char = eof)
 then report success;
 else goto se;
se: print error message;
 return failure;

COMP 412, Fall 2002 27Comp 412 Fall 2005

Building Scanners

The point
• All this technology lets us automate scanner construction
• Implementer writes down the regular expressions
• Scanner generator builds NFA, DFA, minimal DFA, and then

writes out the (table-driven or direct-coded) code
• This reliably produces fast, robust scanners

For most modern language features, this works
• You should think twice before introducing a feature that

defeats a DFA-based scanner
• The ones we’ve seen (e.g., insignificant blanks, non-reserved

keywords) have not proven particularly useful or long lasting

