# Lexical Analysis: DFA Minimization \& Wrap Up 

## COMP 412 <br> Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy \& Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

## Automating Scanner Construction

RE $\rightarrow$ NFA (Thompson's construction)
The Cycle of Constructions

- Build an NFA for each term
- Combine them with $\varepsilon$-moves

NFA $\rightarrow$ DFA (subset construction)


- Build the simulation

DFA $\rightarrow$ Minimal DFA (today)

- Hopcroft's algorithm

DFA $\rightarrow$ RE (not really part of scanner construction)

- All pairs, all paths problem
- Union together paths from $s_{0}$ to a final state


## DFA Minimization

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state


## DFA Minimization

The Big Picture

- Discover sets of equivalent states in the DFA
- Represent each such set with a single state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on $\alpha$ lead to equivalent states
- $\alpha$-transitions to distinct sets $\Rightarrow$ states must be in distinct sets


## DFA Minimization

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on $\alpha$ lead to equivalent states
- $\alpha$-transitions to distinct sets $\Rightarrow$ states must be in distinct sets

A partition $P$ of $S$

- A collection of sets $P$ s.t. each $s \in S$ is in exactly one $p_{i} \in P$
- The algorithm iteratively partitions the DFA's states


## DFA Minimization

Details of the algorithm

- Group states into maximal size sets, optimistically
- Iteratively subdivide those sets, based on transition graph
- States that remain grouped together are equivalent

Initial partition, $P_{0}$, has two sets: $\{F\} \&\{S-F\} \quad\left(D=\left(S, \Sigma, \delta, S_{0}, F\right)\right)$
final states others
Splitting a set ("partitioning a set by $\mathbf{a}^{\prime \prime}$ )

- Assume $s_{a} \& s_{b} \in p_{i}$, and $\delta\left(s_{a}, \underline{a}\right)=s_{x}$ \& $\delta\left(s_{b}, \underline{a}\right)=s_{y}$
- If $s_{x} \& s_{y}$ are not in the same set, then $p_{i}$ must be split
- $s_{a}$ has transition on $a, s_{b}$ does not $\Rightarrow a$ splits $p_{i}$
- One state in the final DFA cannot have two transitions on a


## Key Idea: Splitting S around $\alpha$

Original set $S$

$S$ has transitions on $\alpha$ to $R, Q, \& T$

The algorithm partitions $S$ around $\alpha$

## Key Idea: Splitting $p_{i}$ around $\alpha$



## DFA Minimization

The algorithm

$$
\begin{aligned}
& P \leftarrow\{F,\{S-F\}\} \\
& \text { while }(P \text { is still changing) } \\
& T \leftarrow\} \\
& \text { for each } p_{i} \in P \\
& \text { for each } \alpha \in \Sigma \\
& \text { partition } p_{i} \text { by } \alpha \\
& \text { into } p_{j} \text {, and } p_{k} \\
& \text { if } p_{i} \text { splits } \\
& T \leftarrow T \cup p_{j} \cup p_{k} \\
& \text { else } \\
& T \leftarrow T \cup p_{i} \\
& \text { if } T \neq P \text { then } \\
& P \leftarrow T
\end{aligned}
$$

Why does this work?

- Partition $P \in 2^{S}$
- Start off with 2 subsets of S: $\{F\}$ and $\{S-F\}$
- The while loop takes $P^{i} \rightarrow P^{i+1}$ by splitting 1 or more sets
- $\quad P^{i+1}$ is at least one step closer to the partition with $|S|$ sets
- Maximum of $|S|$ splits

Note that

- Partitions are never combined
- Initial partition ensures that final states remain final states


## DFA Minimization

Refining the algorithm

- As written, it examines every $p_{i} \in P$ on each iteration
- This strategy entails a lot of unnecessary work
- Only need to examine $p_{i}$ if some T, reachable from $p_{i}$, has split
- Reformulate the algorithm using a "worklist"
- Start worklist with initial partition, F and \{S-F\}
- When it splits $p_{i}$ into $p_{1}$ and $p_{2}$, place $p_{2}$ on worklist

This version looks at each $p_{i} \in P$ many fewer times

- Well-known, widely used algorithm due to John Hopcroft


## Key Idea: Splitting $S$ around $\alpha$



This part must have an $\alpha$-transition to one or more other states in one or more other partitions.
Otherwise, it does not split!

## Hopcroft's Algorithm

$W \leftarrow\{F, S-F\} ; P \leftarrow\{F, S-\digamma\} ; / / W$ is the worklist, $P$ the current partition
while ( $W$ is not empty ) do begin
select and remove $s$ from $W ; / / s$ is a set of states
for each $\alpha$ in $\Sigma$ do begin
let $I_{\alpha} \leftarrow \delta_{\alpha}^{-1}(s) ; / / I_{\alpha}$ is set of all states that can reach $s$ on $\alpha$
for each $R$ in $P$ such that $R \cap I_{\alpha}$ is not empty
and $R$ is not contained in $I_{\alpha}$ do begin
partition $R$ into $R_{1}$ and $R_{2}$ such that $R_{1} \leftarrow R \cap I_{\alpha} ; R_{2} \leftarrow R-R_{1}$; replace $R$ in P with $R_{1}$ and $R_{2}$;
if $R \in W$ then replace $R$ with $R_{1}$ in $W$ and add $R_{2}$ to $W$;
else if $\left|R_{1}\right| \leq\left|R_{2}\right|$
then add add $R_{1}$ to $W$;
else add $R_{2}$ to $W$;
end
end
end

## Key Idea: Splitting $p_{i}$ around $\alpha$



How does the worklist algorithm ensure that $p_{k}$ eventually splits around Q \& R ?
Subtle point: either $Q$ or $R$ (or both) must already be on the worklist. ( $Q \& R$ have split from \{S-F\}.)

Thus, it can split $p_{i}$ around one state $(T) \&$ add either $p_{j}$ or $p_{k}$ to the worklist.13

## A Detailed Example

Remember $(\underline{a} \mid \underline{b})^{\star} \underline{a b b}$ ?
(from last lecture)


Applying the subset construction:

| Iter. | State | Contains | $\varepsilon$-closure( <br> $\left.\operatorname{move}\left(s_{i}, \mathbf{a}\right)\right)$ | $\varepsilon$-closure <br> $\left.\operatorname{move}\left(s_{i}, \underline{b}\right)\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | $s_{0}$ | $q_{0}, q_{1}$ | $q_{1}, q_{2}$ | $q_{1}$ |
| $\mathbf{1}$ | $s_{1}$ | $q_{1}, q_{2}$ | $q_{1}, q_{2}$ | $q_{1}, q_{3}$ |
|  | $s_{2}$ | $q_{1}$ | $q_{1}, q_{2}$ | $q_{1}$ |
| 2 | $s_{3}$ | $q_{1}, q_{3}$ | $q_{1}, q_{2}$ | $q_{1}, q_{4}$ |
| 3 | $s_{4}$ | $q_{1},\left(q_{4}\right)$ | $q_{1}, q_{2}$ | $q_{1}$ |

Iteration 3 adds nothing to $S$, so the algorithm halts

## A Detailed Example

The DFA for $(\underline{a} \mid \underline{b})^{*} \underline{a b b}$


| $\delta$ | $\underline{\mathbf{a}}$ | $\underline{\mathbf{b}}$ |
| :---: | :--- | :--- |
| $\boldsymbol{s}_{0}$ | $\boldsymbol{s}_{1}$ | $\boldsymbol{s}_{2}$ |
| $\boldsymbol{s}_{1}$ | $\boldsymbol{s}_{1}$ | $\boldsymbol{s}_{3}$ |
| $\boldsymbol{s}_{2}$ | $\boldsymbol{s}_{1}$ | $\boldsymbol{s}_{2}$ |
| $\boldsymbol{s}_{3}$ | $\boldsymbol{s}_{1}$ | $\boldsymbol{s}_{4}$ |
| $\boldsymbol{s}_{4}$ | $\boldsymbol{s}_{1}$ | $\boldsymbol{s}_{2}$ |

- Not much bigger than the original NFA
- All transitions are deterministic
- Use same code skeleton as before


## A Detailed Example

(DFA Minimization)

|  | Current Partition | Worklist | $S$ | Split on a | Split on $\underline{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Po | $\left\{s_{4}\right\}\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$ | $\begin{gathered} \left\{s_{4}\right\} \\ \left\{s_{0}, s_{1}, s_{2}, s_{3}\right\} \end{gathered}$ | $\left\{S_{4}\right\}$ | none | none |
| $P_{0}$ | $\left\{s_{4}\right\}\left\{s_{0}, S_{1}, S_{2}, S_{3}\right\}$ | $\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\}$ | $\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$ | none | $\begin{gathered} \left\{s_{0}, s_{1}, s_{2}\right\} \\ \left\{s_{3}\right\} \end{gathered}$ |
| $P_{1}$ | $\left\{s_{4}\right\}\left\{s_{3}\right\}\left\{s_{0}, s_{1}, s_{2}\right\}$ | $\left\{s_{3}\right\}$ | $\left\{s_{3}\right\}$ | none | $\left\{s_{0}, s_{2}\right\}\left\{s_{1}\right\}$ |
| $P_{2}$ | \{s4) $\left\{s_{3}\right\}\left\{s_{1}\right\}\left\{s_{0}, s_{2}\right\}$ | $\left\{s_{1}\right\}$ | $\left\{s_{1}\right\}$ | none | none |
| final state |  |  |  |  |  |
|  |  |  |  |  |  |

## DFA Minimization

What about $\underline{a}(\underline{b} \mid \underline{c})^{*}$ ?


First, the subset construction:



Comp 412 Fall 2005

## DFA Minimization

Then, apply the minimization algorithm


To produce the minimal DFA


In lecture 5, we observed that a human would design a simpler automaton than Thompson's construction \& the subset construction did.

Minimizing that DFA produces the one that a human would design!

## Abbreviated Register Specification

Start with a regular expression
r0|r1|r2|r3|r4|r5|r6|r7|r8|r9

The Cycle of Constructions

## Abbreviated Register Specification

Thompson's construction produces


## Abbreviated Register Specification

The subset construction builds


This is a DFA, but it has a lot of states ...
The Cycle of Constructions

## Abbreviated Register Specification

The DFA minimization algorithm builds


This looks like what a skilled compiler writer would do!
The Cycle of Constructions


## Limits of Regular Languages

Not all languages are regular

$$
\text { RL's } \subset C F L \text { 's } \subset C S L \text { 's }
$$

You cannot construct DFA's to recognize these languages

- $L=\left\{p^{k} q^{k}\right\}$
(parenthesis languages)
- $L=\left\{w c w^{r} \mid w \in \Sigma^{*}\right\}$

Neither of these is a regular language
But, this is a little subtle. You can construct DFA's for

- Strings with alternating O's and 1's

$$
(\varepsilon \mid 1)(01)^{*}(\varepsilon \mid 0)
$$

- Strings with and even number of 0's and 1's

See Homework 1!
RE's can count bounded sets and bounded differences

## Limits of Regular Languages

Advantages of Regular Expressions

- Simple \& powerful notation for specifying patterns
- Automatic construction of fast recognizers
- Many kinds of syntax can be specified with REs

Example - an expression grammar
Term $\rightarrow[a-z A-Z]([a-z A-Z] \mid[0-9])^{*}$
Op $\rightarrow \pm 1=1 \pm \mid 1$
Expr $\rightarrow$ (Term Op $)^{*}$ Term
Of course, this would generate a DFA ...
If REs are so useful ...
Why not use them for everything?

## Table-Driven Versus Direct-Coded Scanners

Table-driven recognizers use indexing
index
index
index register

- Assign to the state variable
- Branch back to the top
- Read (\& classify) the next character
- Select the case using action()
- Find the next state

```
state}\leftarrow\mp@subsup{s}{0}{}\mathrm{ ;
while (state ' }\mp@subsup{}{}{1}\mathrm{ exit)
    state \leftarrowd(state,char);
    perform (action(state,char));
    char }\leftarrow\mathrm{ next character;
```

Alternative strategy: direct coding

- Encode state in the program counter
- Each state is a separate piece of code
- Do transition tests locally and directly branch
- Generate ugly, spaghetti-like code
- More efficient than table driven strategy
- Fewer memory operations, might have more branches


## Building Faster Scanners from the DFA

A direct-coded recognizer for $\underline{r}$ Digit Digit ${ }^{*}$

```
    goto So:
so: word }\leftarrow\varnothing\mathrm{ ;
    char \leftarrownext character:
    if (char = 'r')
        then goto si;
        else goto s,
s
    char }\leftarrow\mathrm{ next character;
    if ('O'\leq char\leq '9')
        then goto s2;
        else goto Se,
```

```
s2: word \leftarrowword + char;
    char \leftarrow next character:
    if ('0'\leqchar\leq '9')
        then goto s_;
        else if (char = eof)
            then report success;
            else goto se;
s}\mp@subsup{s}{e}{}\mathrm{ : print error message;
    return failure;
```

- Many fewer operations per character
- Almost no memory operations
- Even faster with careful use of fall-through cases


## Building Scanners

The point

- All this technology lets us automate scanner construction
- Implementer writes down the regular expressions
- Scanner generator builds NFA, DFA, minimal DFA, and then writes out the (table-driven or direct-coded) code
- This reliably produces fast, robust scanners

For most modern language features, this works

- You should think twice before introducing a feature that defeats a DFA-based scanner
- The ones we've seen (e.g., insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting

