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Quick Review

Previous class:
— The scanner is the first stage in the front end
— Specifications can be expressed using regular expressions
— Build tables and code from a DFA

Scanner

Scanner
Generator

specifications

source code parts of speech
& words

tables
or code
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More Regular Expressions
• All strings of 1s and 0s ending in a 1

• All strings over lowercase letters where the vowels (a,e,i,o,
& u) occur exactly once, in ascending order

• All strings of 1s and 0s that do not contain three 0s in a row:

( 1* ( ε |01 | 001 ) 1* )* ( ε | 0 | 00 )

( 0 | 1 )* 1

Cons → (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)
Cons* a Cons* e Cons* i Cons* o Cons* u Cons*
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Goal

• We will show how to construct a finite state automaton to
recognize any RE

• Overview:
— Direct construction of a nondeterministic finite automaton

(NFA) to recognize a given RE
– Requires ε-transitions to combine regular subexpressions

— Construct a deterministic finite automaton (DFA) to simulate
the NFA

– Use a set-of-states construction
— Minimize the number of states in the DFA

– Hopcroft state minimization algorithm
— Generate the scanner code

– Additional specifications needed for the actions
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Non-deterministic Finite Automata

What about an RE such as ( a | b )* abb ?

Each RE corresponds to a deterministic finite automaton (DFA)

• May be hard to directly construct the right DFA

S0 S1 S3 S2 

b

b

b

b

a

a

a

a
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Non-deterministic Finite Automata
Here is another RE for ( a | b )* abb

This recognizer has different properties

• S0 has a transition on ε

• S1 has two transitions on a
This is a non-deterministic finite automaton (NFA)

a | b

S0 S1 S4 S2 S3 

ε a bb
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Non-deterministic Finite Automata
An NFA accepts a string x iff ∃ a path though the transition

graph from s0 to a final state such that the edge labels spell
x, ignoring ε’s

• Transitions on ε consume no input

• To “run” the NFA, start in s0 and guess the right transition at
each step

— Always guess correctly
— If some sequence of correct guesses accepts x then accept

Why study NFAs?
• They are the key to automating the RE→DFA construction
• We can paste together NFAs with ε-transitions

NFA NFA becomes an NFA
ε
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Relationship between NFAs and DFAs

DFA is a special case of an NFA

• DFA has no ε transitions
• DFA’s transition function is single-valued
• Same rules will work

DFA can be simulated with an NFA
— Obviously

NFA can be simulated with a DFA                             (less obvious)
• Simulate sets of possible states
• Possible exponential blowup in the state space
• Still, one state per character in the input stream
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Automating Scanner Construction

To convert a specification into code:
1 Write down the RE for the input language
2 Build a big NFA
3 Build the DFA that simulates the NFA
4 Systematically shrink the DFA
5 Turn it into code

Scanner generators
• Lex and Flex work along these lines
• Algorithms are well-known and well-understood
• Key issue is interface to parser       (define all parts of speech)
• You could build one in a weekend!
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Automating Scanner Construction

RE→ NFA  (Thompson’s construction)
• Build an NFA for each term
• Combine them with ε-moves

NFA → DFA (subset construction)
• Build the simulation

DFA → Minimal DFA

• Hopcroft’s algorithm

DFA →RE (Not part of the scanner construction)

• All pairs, all paths problem
• Take the union of all paths from s0 to an accepting state

minimal
DFA

RE NFA DFA

The Cycle of Constructions
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RE →NFA using Thompson’s Construction

Key idea

• NFA pattern for each symbol & each operator

• Join them with ε moves in precedence order

S0 S1 

a

NFA for a

S0 S1 

a
S3 S4 

b

NFA for ab

ε

NFA for a | b

S0 

S1 S2 

a

S3 S4 

b

S5 

ε

ε ε

ε

S0 S1 

ε
S3 S4 

ε

NFA for a*

a

ε

ε

Ken Thompson, CACM, 1968
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Example of Thompson’s Construction

Let’s try a ( b | c )*

1.  a, b, & c

2.  b | c

3.  ( b | c )*

S0 S1 
a

S0 S1 
b

S0 S1 
c

S2 S3 
b

S4 S5 
c

S1 S6 S0 S7 

ε

ε

ε ε

ε ε

ε ε

S1 S2 
b

S3 S4 
c

S0 S5 

ε

ε

ε

ε
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Example of Thompson’s Construction      (con’t)

4.  a ( b | c )*

Of course, a human would design something simpler ...

S0 S1 
a

b | c

But, we can automate production
of the more complex one ...

S0 S1 
a ε

S4 S5 
b

S6 S7 
c

S3 S8 S2 S9 

ε

ε

ε ε

ε ε

ε ε
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Automating Scanner Construction

RE→ NFA  (Thompson’s construction) 
• Build an NFA for each term
• Combine them with ε-moves

NFA → DFA (subset construction) ⇐
• Build the simulation

DFA → Minimal DFA

• Hopcroft’s algorithm

DFA →RE (Not part of the scanner construction)

• All pairs, all paths problem
• Take the union of all paths from s0 to an accepting state

minimal
DFA

RE NFA DFA

The Cycle of Constructions
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NFA →DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions
•  Move(si , a) is the set of states reachable from si by a
•  ε-closure(si) is the set of states reachable from si by ε

The algorithm:
• Start state derived from s0 of the NFA
• Take its ε-closure S0 = ε-closure({s0})
• Take the image of S0, Move(S0, α) for each  α ∈ Σ, and take

its ε-closure
• Iterate until no more states are added

Sounds more complex than it is…
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NFA →DFA with Subset Construction

The algorithm:

s0 ← ε-closure({n0})

S ← { s0 }
W ← { s0 }
while ( W ≠  Ø )

select and remove s from W
for each α ∈ Σ

t ← ε-closure(Move(s,α))

T[s,α] ← t
if ( t ∉ S ) then

add t to S
add t to W

Let’s think about why this works

The algorithm halts:

1.  S contains no duplicates
      (test before adding)

2.  2{NFA states} is finite

3.  while loop adds to S, but does
     not remove from S (monotone)

⇒ the loop halts

S contains all the reachable
NFA states
It tries each character in each si.

It builds every possible NFA
    configuration.

⇒ S and T form the DFA

This test is a little tricky
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NFA →DFA with Subset Construction

The algorithm:

s0 ← ε-closure({n0})

S ← { s0 }
W ← { s0 }
while ( W ≠  Ø )

select and remove s from W
for each α ∈ Σ

t ← ε-closure(Move(s,α))

T[s,α] ← t
if ( t ∉ S ) then

add t to S
add t to W

Let’s think about why this works

The algorithm halts:

1.  S contains no duplicates
      (test before adding)

2.  2{NFA states} is finite

3.  while loop adds to S, but does
     not remove from S (monotone)

⇒ the loop halts

S contains all the reachable
NFA states
It tries each character in each si.

It builds every possible NFA
    configuration.

⇒ S and T form the DFA

Any DFA state containing an NFA final
state becomes a DFA final state.
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NFA →DFA with Subset Construction

Example of a fixed-point computation
• Monotone construction of some finite set
• Halts when it stops adding to the set
• Proofs of halting & correctness are similar
• These computations arise in many contexts

Other fixed-point computations
• Canonical construction of sets of LR(1) items

— Quite similar to the subset construction

• Classic data-flow analysis (& Gaussian Elimination)
— Solving sets of simultaneous set equations

We will see many more fixed-point computations
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!-closure(Move(s,*))

NFA states a b c

s0 q0

q1, q2, q3,
 q4, q6, q9

none none

s1

q1, q2, q3,
q4, q6, q9

none
q5, q8, q9,
q3, q4, q6

q7, q8, q9,
q3, q4, q6

s2

q5, q8, q9,
q3, q4, q6

none s2 s3

s3

q7, q8, q9,
q3, q4, q6

none s2 s3

NFA →DFA with Subset Construction

a ( b | c )* :

q0 q1 
a ε

q4 q5 
b

q6 q7 
c

q3 q8 q2 q9 

ε

ε ε

ε ε

ε ε

ε

Final states
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!-closure(Move(s,*))

NFA states a b c

s0 q0

q1, q2, q3,
 q4, q6, q9

none none

s1

q1, q2, q3,
q4, q6, q9

none
q5, q8, q9,
q3, q4, q6

q7, q8, q9,
q3, q4, q6

s2

q5, q8, q9,
q3, q4, q6

none s2 s3

s3

q7, q8, q9,
q3, q4, q6

none s2 s3

NFA →DFA with Subset Construction

a ( b | c )* :

q0 q1 
a ε

q4 q5 
b

q6 q7 
c

q3 q8 q2 q9 

ε

ε ε

ε ε

ε ε

ε

Final states
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NFA →DFA with Subset Construction

The DFA for a ( b | c )*

• Ends up smaller than the NFA

• All transitions are deterministic

• Use same code skeleton as before

! a b c

s0 s1 - -

s1 - s2 s3

s2 - s2 s3

s3 - s2 s3

s3 

s2 

s0 s1 

c

b
a

b

c

c

b

ε-transitions mess up
the cost model, anyway
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Where are we?  Why are we doing this?
RE → NFA  (Thompson’s construction)  
• Build an NFA for each term
• Combine them with ε-moves

NFA → DFA (subset construction) 
• Build the simulation

DFA → Minimal DFA ←

• Hopcroft’s algorithm

DFA → RE

• All pairs, all paths problem
• Union together paths from s0 to a final state

Enough theory for today

minimal
DFA

RE NFA DFA

The Cycle of Constructions


