# Lexical Analysis - Part II: Constructing a Scanner from Regular Expressions 

COMP 412<br>Fall 2005

> Copyright 2005 , Keith D. Cooper, Ken Kennedy \& Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

## Quick Review



Previous class:

- The scanner is the first stage in the front end
- Specifications can be expressed using regular expressions
- Build tables and code from a DFA


## More Regular Expressions

- All strings of 1 s and 0 s ending in a $\underline{1}$

$$
(\underline{0} \mid \underline{1})^{*} \underline{1}
$$

- All strings over lowercase letters where the vowels ( $a, e, i, 0$, \& u) occur exactly once, in ascending order

$$
\begin{aligned}
& \text { Cons* } \underline{a} \text { Cons }^{*} \underline{e} \text { Cons }^{*} \underline{\underline{i}} \text { Cons }^{*} \underline{o} \text { Cons }^{*} \underline{\underline{u}} \text { Cons }^{*}
\end{aligned}
$$

- All strings of $\underline{1} s$ and $\underline{0} s$ that do not contain three $\underline{0} s$ in a row:

$$
\left(\underline{1}^{*}(\varepsilon|\underline{01}| \underline{001}) \underline{1}^{*}\right)^{*}(\varepsilon|\underline{0}| \underline{00})
$$

## Goal

- We will show how to construct a finite state automaton to recognize any RE
- Overview:
- Direct construction of a nondeterministic finite automaton (NFA) to recognize a given RE
- Requires $\varepsilon$-transitions to combine regular subexpressions
- Construct a deterministic finite automaton (DFA) to simulate the NFA
- Use a set-of-states construction
- Minimize the number of states in the DFA
- Hopcroft state minimization algorithm
- Generate the scanner code
- Additional specifications needed for the actions


## Non-deterministic Finite Automata

What about an RE such as $(\underline{a} \mid \underline{b})^{*} a b b$ ?


Each RE corresponds to a deterministic finite automaton (DFA)

- May be hard to directly construct the right DFA


## Non-deterministic Finite Automata

Here is another RE for $(\underline{a} \mid \underline{b})^{*} \underline{a b b}$


This recognizer has different properties

- $S_{0}$ has a transition on $\varepsilon$
- $S_{1}$ has two transitions on $\underline{a}$

This is a non-deterministic finite automaton (NFA)

## Non-deterministic Finite Automata

An NFA accepts a string $x$ iff $\exists$ a path though the transition graph from $s_{0}$ to a final state such that the edge labels spell $x$, ignoring $\varepsilon^{\prime} s$

- Transitions on $\varepsilon$ consume no input
- To "run" the NFA, start in $s_{0}$ and guess the right transition at each step
- Always guess correctly
- If some sequence of correct guesses accepts $x$ then accept

Why study NFAs?

- They are the key to automating the RE $\rightarrow$ DFA construction
- We can paste together NFAs with $\varepsilon$-transitions



## Relationship between NFAs and DFAs

DFA is a special case of an NFA

- DFA has no $\varepsilon$ transitions
- DFA's transition function is single-valued
- Same rules will work

DFA can be simulated with an NFA

- Obviously

NFA can be simulated with a DFA

- Simulate sets of possible states
- Possible exponential blowup in the state space
- Still, one state per character in the input stream


## Automating Scanner Construction

To convert a specification into code:
1 Write down the RE for the input language
2 Build a big NFA
3 Build the DFA that simulates the NFA
4 Systematically shrink the DFA
5 Turn it into code

Scanner generators

- Lex and Flex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser (define all parts of speech)
- You could build one in a weekend!


## Automating Scanner Construction

## RE $\rightarrow$ NFA (Thompson's construction)

- Build an NFA for each term
- Combine them with $\varepsilon$-moves

NFA $\rightarrow$ DFA (subset construction)

- Build the simulation

DFA $\rightarrow$ Minimal DFA

- Hopcroft's algorithm

The Cycle of Constructions


DFA $\rightarrow$ RE (Not part of the scanner construction)

- All pairs, all paths problem
- Take the union of all paths from $s_{0}$ to an accepting state


## RE $\rightarrow$ NFA using Thompson's Construction

Key idea

- NFA pattern for each symbol \& each operator
- Join them with $\varepsilon$ moves in precedence order


NFA for a


NFA for $\underline{a} \mid \underline{b}$



Ken Thompson, CACM, 1968

## Example of Thompson's Construction

Let's try $\underline{a}(\underline{b} \mid \underline{c})^{*}$

2. $\underline{b} \mid \underline{c}$

3. $(\underline{b} \mid \underline{c})^{*}$


## Example of Thompson's Construction

4. $\underline{a}(\underline{b} \mid \underline{c})^{\star}$


Of course, a human would design something simpler ...


But, we can automate production of the more complex one ...

## Automating Scanner Construction

## RE $\rightarrow$ NFA (Thompson's construction) $\checkmark$

- Build an NFA for each term
- Combine them with $\varepsilon$-moves

NFA $\rightarrow$ DFA (subset construction) $\Leftarrow$

- Build the simulation

DFA $\rightarrow$ Minimal DFA

- Hopcroft's algorithm

The Cycle of Constructions


DFA $\rightarrow$ RE (Not part of the scanner construction)

- All pairs, all paths problem
- Take the union of all paths from $s_{0}$ to an accepting state


## NFA $\rightarrow$ DFA with Subset Construction

Need to build a simulation of the NFA
Two key functions

- $\operatorname{Move}\left(s_{i}, \underline{a}\right)$ is the set of states reachable from $s_{i}$ by $\underline{a}$
- $\varepsilon$-closure $\left(s_{i}\right)$ is the set of states reachable from $s_{i}$ by $\varepsilon$

The algorithm:

- Start state derived from $s_{0}$ of the NFA
- Take its $\varepsilon$-closure $S_{0}=\varepsilon$-closure $\left(\left\{s_{0}\right\}\right)$
- Take the image of $S_{0}$, $\operatorname{Move}\left(S_{0}, \alpha\right)$ for each $\alpha \in \Sigma$, and take its $\varepsilon$-closure
- Iterate until no more states are added Sounds more complex than it is...


## NFA $\rightarrow$ DFA with Subset Construction

The algorithm:
$s_{0} \leftarrow \varepsilon$-closure( $\left\{n_{0}\right\}$ )
$S \leftarrow\left\{s_{0}\right\}$
$W \leftarrow\left\{s_{0}\right\}$
while ( $W \neq \varnothing$ ) select and remove s from $W$ for each $\alpha \in \Sigma$
$t \leftarrow \varepsilon$-closure(Move $(s, \alpha)$ )
$T[s, \alpha] \leftarrow t$
if $(t \notin S$ ) then add $t$ to $S$ add $t$ to $W$

Let's think about why this works

The algorithm halts:

1. $S$ contains no duplicates (test before adding)
2. $2^{\text {\{NFA states }\}}$ is finite
3. while loop adds to $S$, but does not remove from $S$ (monotone)
$\Rightarrow$ the loop halts
$S$ contains all the reachable NFA states
It tries each character in each $s_{i}$. It builds every possible NFA configuration.
$\Rightarrow S$ and $T$ form the DFA

## NFA $\rightarrow$ DFA with Subset Construction

The algorithm:
$s_{0} \leftarrow \varepsilon$-closure( $\left\{n_{0}\right\}$ )
$S \leftarrow\left\{s_{0}\right\}$
$W \leftarrow\left\{s_{0}\right\}$
while ( $W \neq \varnothing$ ) select and remove s from $W$ for each $\alpha \in \Sigma$
$t \leftarrow \varepsilon$-closure(Move(s, $\alpha$ ))
$T[s, \alpha] \leftarrow t$
if $(t \notin S$ ) then
add $t$ to $S$ add $t$ to $W$

Let's think about why this works

## The algorithm halts:

1. $S$ contains no duplicates (test before adding)
2. $2^{\text {\{NFA states }\}}$ is finite
3. while loop adds to $S$, but does not remove from $S$ (monotone)
$\Rightarrow$ the loop halts
$S$ contains all the reachable NFA states
It tries each character in each $s_{i}$.
It builds every possible NFA configuration.
$\Rightarrow S$ and $T$ form the DFA

Any DFA state containing an NFA final state becomes a DFA final state.

## NFA $\rightarrow$ DFA with Subset Construction

## Example of a fixed-point computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting \& correctness are similar
- These computations arise in many contexts

Other fixed-point computations

- Canonical construction of sets of LR(1) items
- Quite similar to the subset construction
- Classic data-flow analysis (\& Gaussian Elimination)
- Solving sets of simultaneous set equations

We will see many more fixed-point computations

## NFA $\rightarrow$ DFA with Subset Construction



|  |  | $\varepsilon$-closure(Move(s,*)) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | NFA states | a | b | c |
| $s_{o}$ | $q_{0}$ |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  | Final states |  |

## NFA $\rightarrow$ DFA with Subset Construction



|  |  |  | sure(Mov | *)) |
| :---: | :---: | :---: | :---: | :---: |
|  | NFA states | a | b | c |
| $s_{0}$ | $q_{0}$ | $\begin{gathered} q_{1}, q_{2}, q_{3} \\ q_{4}, q_{6}, q_{9} \end{gathered}$ | none | none |
| $s_{1}$ | $\begin{aligned} & q_{1}, q_{2}, q_{3} \\ & q_{4}, q_{6}, q_{9} \end{aligned}$ | none | $\begin{aligned} & q_{5}, q_{8}, q_{9} \\ & q_{3}, q_{4}, q_{6} \end{aligned}$ | $\begin{gathered} q_{7}, q_{8}, q_{9} \\ q_{3}, q_{4}, q_{6} \end{gathered}$ |
| $s_{2}$ | $\begin{aligned} & q_{5}, q_{8}, q_{9}, \\ & q_{3}, q_{4}, q_{6} \end{aligned}$ | none | $S_{2}$ | $S_{3}$ |
| $s_{3}$ | $\begin{aligned} & q_{7}, q_{8}, q_{9}, \\ & q_{3}, q_{4}, q_{6} \end{aligned}$ | none | $s_{2}$ | $S_{3}$ |
| 005 |  |  | nal states |  |

## NFA $\rightarrow$ DFA with Subset Construction

The DFA for $\underline{a}(\underline{b} \mid \underline{c})^{*}$


| $\delta$ | $\underline{\mathbf{a}}$ | $\underline{\mathbf{b}}$ | $\underline{\mathbf{c}}$ |
| :---: | :---: | :---: | :---: |
| $s_{0}$ | $s_{1}$ | - | - |
| $s_{1}$ | - | $s_{2}$ | $s_{3}$ |
| $s_{2}$ | - | $s_{2}$ | $s_{3}$ |
| $s_{3}$ | - | $s_{2}$ | $s_{3}$ |

- Ends up smaller than the NFA
- All transitions are deterministic
- Use same code skeleton as before


## Where are we? Why are we doing this?

RE $\rightarrow$ NFA (Thompson's construction)

- Build an NFA for each term
- Combine them with $\varepsilon$-moves

NFA $\rightarrow$ DFA (subset construction)

- Build the simulation

DFA $\rightarrow$ Minimal DFA $\leftarrow$

- Hopcroft's algorithm


DFA $\rightarrow$ RE

- All pairs, all paths problem
- Union together paths from $s_{0}$ to a final state

Enough theory for today

