
Lexical Analysis — Part II:
Constructing a Scanner from Regular

Expressions

COMP 412
Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

COMP 412, Fall 2002 2Comp 412 Fall 2005

Quick Review

Previous class:
— The scanner is the first stage in the front end
— Specifications can be expressed using regular expressions
— Build tables and code from a DFA

Scanner

Scanner
Generator

specifications

source code parts of speech
& words

tables
or code

COMP 412, Fall 2002 3Comp 412 Fall 2005

More Regular Expressions
• All strings of 1s and 0s ending in a 1

• All strings over lowercase letters where the vowels (a,e,i,o,
& u) occur exactly once, in ascending order

• All strings of 1s and 0s that do not contain three 0s in a row:

(1* (ε |01 | 001) 1*)* (ε | 0 | 00)

(0 | 1)* 1

Cons → (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)
Cons* a Cons* e Cons* i Cons* o Cons* u Cons*

COMP 412, Fall 2002 4Comp 412 Fall 2005

Goal

• We will show how to construct a finite state automaton to
recognize any RE

• Overview:
— Direct construction of a nondeterministic finite automaton

(NFA) to recognize a given RE
– Requires ε-transitions to combine regular subexpressions

— Construct a deterministic finite automaton (DFA) to simulate
the NFA

– Use a set-of-states construction
— Minimize the number of states in the DFA

– Hopcroft state minimization algorithm
— Generate the scanner code

– Additional specifications needed for the actions

COMP 412, Fall 2002 5Comp 412 Fall 2005

Non-deterministic Finite Automata

What about an RE such as (a | b)* abb ?

Each RE corresponds to a deterministic finite automaton (DFA)

• May be hard to directly construct the right DFA

S0 S1 S3 S2

b

b

b

b

a

a

a

a

COMP 412, Fall 2002 6Comp 412 Fall 2005

Non-deterministic Finite Automata
Here is another RE for (a | b)* abb

This recognizer has different properties

• S0 has a transition on ε

• S1 has two transitions on a
This is a non-deterministic finite automaton (NFA)

a | b

S0 S1 S4 S2 S3

ε a bb

COMP 412, Fall 2002 7Comp 412 Fall 2005

Non-deterministic Finite Automata
An NFA accepts a string x iff ∃ a path though the transition

graph from s0 to a final state such that the edge labels spell
x, ignoring ε’s

• Transitions on ε consume no input

• To “run” the NFA, start in s0 and guess the right transition at
each step

— Always guess correctly
— If some sequence of correct guesses accepts x then accept

Why study NFAs?
• They are the key to automating the RE→DFA construction
• We can paste together NFAs with ε-transitions

NFA NFA becomes an NFA
ε

COMP 412, Fall 2002 8Comp 412 Fall 2005

Relationship between NFAs and DFAs

DFA is a special case of an NFA

• DFA has no ε transitions
• DFA’s transition function is single-valued
• Same rules will work

DFA can be simulated with an NFA
— Obviously

NFA can be simulated with a DFA (less obvious)
• Simulate sets of possible states
• Possible exponential blowup in the state space
• Still, one state per character in the input stream

COMP 412, Fall 2002 9Comp 412 Fall 2005

Automating Scanner Construction

To convert a specification into code:
1 Write down the RE for the input language
2 Build a big NFA
3 Build the DFA that simulates the NFA
4 Systematically shrink the DFA
5 Turn it into code

Scanner generators
• Lex and Flex work along these lines
• Algorithms are well-known and well-understood
• Key issue is interface to parser (define all parts of speech)
• You could build one in a weekend!

COMP 412, Fall 2002 10Comp 412 Fall 2005

Automating Scanner Construction

RE→ NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with ε-moves

NFA → DFA (subset construction)
• Build the simulation

DFA → Minimal DFA

• Hopcroft’s algorithm

DFA →RE (Not part of the scanner construction)

• All pairs, all paths problem
• Take the union of all paths from s0 to an accepting state

minimal
DFA

RE NFA DFA

The Cycle of Constructions

COMP 412, Fall 2002 11Comp 412 Fall 2005

RE →NFA using Thompson’s Construction

Key idea

• NFA pattern for each symbol & each operator

• Join them with ε moves in precedence order

S0 S1

a

NFA for a

S0 S1

a
S3 S4

b

NFA for ab

ε

NFA for a | b

S0

S1 S2

a

S3 S4

b

S5

ε

ε ε

ε

S0 S1

ε
S3 S4

ε

NFA for a*

a

ε

ε

Ken Thompson, CACM, 1968

COMP 412, Fall 2002 12Comp 412 Fall 2005

Example of Thompson’s Construction

Let’s try a (b | c)*

1. a, b, & c

2. b | c

3. (b | c)*

S0 S1
a

S0 S1
b

S0 S1
c

S2 S3
b

S4 S5
c

S1 S6 S0 S7

ε

ε

ε ε

ε ε

ε ε

S1 S2
b

S3 S4
c

S0 S5

ε

ε

ε

ε

COMP 412, Fall 2002 13Comp 412 Fall 2005

Example of Thompson’s Construction (con’t)

4. a (b | c)*

Of course, a human would design something simpler ...

S0 S1
a

b | c

But, we can automate production
of the more complex one ...

S0 S1
a ε

S4 S5
b

S6 S7
c

S3 S8 S2 S9

ε

ε

ε ε

ε ε

ε ε

COMP 412, Fall 2002 14Comp 412 Fall 2005

Automating Scanner Construction

RE→ NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with ε-moves

NFA → DFA (subset construction) ⇐
• Build the simulation

DFA → Minimal DFA

• Hopcroft’s algorithm

DFA →RE (Not part of the scanner construction)

• All pairs, all paths problem
• Take the union of all paths from s0 to an accepting state

minimal
DFA

RE NFA DFA

The Cycle of Constructions

COMP 412, Fall 2002 15Comp 412 Fall 2005

NFA →DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions
• Move(si , a) is the set of states reachable from si by a
• ε-closure(si) is the set of states reachable from si by ε

The algorithm:
• Start state derived from s0 of the NFA
• Take its ε-closure S0 = ε-closure({s0})
• Take the image of S0, Move(S0, α) for each α ∈ Σ, and take

its ε-closure
• Iterate until no more states are added

Sounds more complex than it is…

COMP 412, Fall 2002 16Comp 412 Fall 2005

NFA →DFA with Subset Construction

The algorithm:

s0 ← ε-closure({n0})

S ← { s0 }
W ← { s0 }
while (W ≠ Ø)

select and remove s from W
for each α ∈ Σ

t ← ε-closure(Move(s,α))

T[s,α] ← t
if (t ∉ S) then

add t to S
add t to W

Let’s think about why this works

The algorithm halts:

1. S contains no duplicates
 (test before adding)

2. 2{NFA states} is finite

3. while loop adds to S, but does
 not remove from S (monotone)

⇒ the loop halts

S contains all the reachable
NFA states
It tries each character in each si.

It builds every possible NFA
 configuration.

⇒ S and T form the DFA

This test is a little tricky

COMP 412, Fall 2002 17Comp 412 Fall 2005

NFA →DFA with Subset Construction

The algorithm:

s0 ← ε-closure({n0})

S ← { s0 }
W ← { s0 }
while (W ≠ Ø)

select and remove s from W
for each α ∈ Σ

t ← ε-closure(Move(s,α))

T[s,α] ← t
if (t ∉ S) then

add t to S
add t to W

Let’s think about why this works

The algorithm halts:

1. S contains no duplicates
 (test before adding)

2. 2{NFA states} is finite

3. while loop adds to S, but does
 not remove from S (monotone)

⇒ the loop halts

S contains all the reachable
NFA states
It tries each character in each si.

It builds every possible NFA
 configuration.

⇒ S and T form the DFA

Any DFA state containing an NFA final
state becomes a DFA final state.

COMP 412, Fall 2002 18Comp 412 Fall 2005

NFA →DFA with Subset Construction

Example of a fixed-point computation
• Monotone construction of some finite set
• Halts when it stops adding to the set
• Proofs of halting & correctness are similar
• These computations arise in many contexts

Other fixed-point computations
• Canonical construction of sets of LR(1) items

— Quite similar to the subset construction

• Classic data-flow analysis (& Gaussian Elimination)
— Solving sets of simultaneous set equations

We will see many more fixed-point computations

COMP 412, Fall 2002 19Comp 412 Fall 2005

!-closure(Move(s,*))

NFA states a b c

s0 q0

q1, q2, q3,
 q4, q6, q9

none none

s1

q1, q2, q3,
q4, q6, q9

none
q5, q8, q9,
q3, q4, q6

q7, q8, q9,
q3, q4, q6

s2

q5, q8, q9,
q3, q4, q6

none s2 s3

s3

q7, q8, q9,
q3, q4, q6

none s2 s3

NFA →DFA with Subset Construction

a (b | c)* :

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

Final states

COMP 412, Fall 2002 20Comp 412 Fall 2005

!-closure(Move(s,*))

NFA states a b c

s0 q0

q1, q2, q3,
 q4, q6, q9

none none

s1

q1, q2, q3,
q4, q6, q9

none
q5, q8, q9,
q3, q4, q6

q7, q8, q9,
q3, q4, q6

s2

q5, q8, q9,
q3, q4, q6

none s2 s3

s3

q7, q8, q9,
q3, q4, q6

none s2 s3

NFA →DFA with Subset Construction

a (b | c)* :

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

Final states

COMP 412, Fall 2002 21Comp 412 Fall 2005

NFA →DFA with Subset Construction

The DFA for a (b | c)*

• Ends up smaller than the NFA

• All transitions are deterministic

• Use same code skeleton as before

! a b c

s0 s1 - -

s1 - s2 s3

s2 - s2 s3

s3 - s2 s3

s3

s2

s0 s1

c

b
a

b

c

c

b

ε-transitions mess up
the cost model, anyway

COMP 412, Fall 2002 22Comp 412 Fall 2005

Where are we? Why are we doing this?
RE → NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with ε-moves

NFA → DFA (subset construction)
• Build the simulation

DFA → Minimal DFA ←

• Hopcroft’s algorithm

DFA → RE

• All pairs, all paths problem
• Union together paths from s0 to a final state

Enough theory for today

minimal
DFA

RE NFA DFA

The Cycle of Constructions

