

Lexical Analysis — Part II: Constructing a Scanner from Regular Expressions

COMP 412 Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Previous class:

- The scanner is the first stage in the front end
- Specifications can be expressed using regular expressions
- Build tables and code from a DFA

More Regular Expressions

• All strings of 1s and 0s ending in a <u>1</u>

(<u>0</u> | <u>1</u>)* <u>1</u>

All strings over lowercase letters where the vowels (a,e,i,o, & u) occur exactly once, in ascending order

 $Cons \rightarrow (\underline{b}|\underline{c}|\underline{d}|\underline{f}|\underline{g}|\underline{h}|\underline{j}|\underline{k}|\underline{l}|\underline{m}|\underline{n}|\underline{p}|\underline{q}|\underline{r}|\underline{s}|\underline{t}|\underline{v}|\underline{w}|\underline{x}|\underline{y}|\underline{z})$ $Cons^{*} \underline{a} \ Cons^{*} \underline{e} \ Cons^{*} \underline{i} \ Cons^{*} \underline{o} \ Cons^{*} \underline{u} \ Cons^{*}$

• All strings of <u>1</u>s and <u>0</u>s that do not contain three <u>0</u>s in a row:

(<u>1</u>^{*} (ε |<u>01</u> | <u>001</u>) <u>1</u>^{*})^{*} (ε | <u>0</u> | <u>00</u>)

- We will show how to construct a finite state automaton to recognize any RE
- Overview:
 - Direct construction of a nondeterministic finite automaton (NFA) to recognize a given RE
 - Requires ϵ -transitions to combine regular subexpressions
 - Construct a deterministic finite automaton (DFA) to simulate the NFA
 - Use a set-of-states construction
 - Minimize the number of states in the DFA
 - Hopcroft state minimization algorithm
 - Generate the scanner code
 - Additional specifications needed for the actions

Non-deterministic Finite Automata

What about an RE such as $(\underline{a} | \underline{b})^* \underline{abb}$?

Each RE corresponds to a deterministic finite automaton (DFA)

• May be hard to directly construct the right DFA

Non-deterministic Finite Automata

Here is another RE for $(\underline{a} | \underline{b})^* \underline{abb}$

This recognizer has different properties

- S_0 has a transition on ε
- S₁ has two transitions on <u>a</u>

This is a non-deterministic finite automaton (NFA)

Non-deterministic Finite Automata

- An NFA accepts a string x iff \exists a path though the transition graph from s_0 to a final state such that the edge labels spell x, ignoring ε 's
- Transitions on ϵ consume no input
- To "run" the NFA, start in s₀ and guess the right transition at each step
 - Always guess correctly
 - If some sequence of correct guesses accepts x then accept

Why study NFAs?

- They are the key to automating the RE \rightarrow DFA construction
- We can paste together NFAs with ϵ -transitions

Comp 412 Fall 2005

Relationship between NFAs and DFAs

DFA is a special case of an NFA

- DFA has no ϵ transitions
- DFA's transition function is single-valued
- Same rules will work

DFA can be simulated with an NFA

– Obviously

NFA can be simulated with a DFA

(less obvious)

- Simulate sets of possible states
- Possible exponential blowup in the state space
- Still, one state per character in the input stream

Automating Scanner Construction

To convert a specification into code:

- 1 Write down the RE for the input language
- 2 Build a big NFA
- 3 Build the DFA that simulates the NFA
- 4 Systematically shrink the DFA
- 5 Turn it into code

Scanner generators

- Lex and Flex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser (define all parts of speech)
- You could build one in a weekend!

 $DFA \rightarrow RE$ (Not part of the scanner construction)

Automating Scanner Construction

- All pairs, all paths problem
- Take the union of all paths from s_0 to an accepting state

 $RE \rightarrow NFA$ using Thompson's Construction

Key idea

- NFA pattern for each symbol & each operator
- Join them with ϵ moves in precedence order

Ken Thompson, CACM, 1968

Example of Thompson's Construction

Let's try $\underline{a} (\underline{b} | \underline{c})^*$

1. $\underline{a}, \underline{b}, \& \underline{c}$ $(\underline{s}_0) \xrightarrow{\underline{a}} (\underline{s}_1) (\underline{s}_0) \xrightarrow{\underline{b}} (\underline{s}_1) (\underline{s}_0) \xrightarrow{\underline{c}} (\underline{s}_1)$

2. <u>b</u> | <u>c</u>

(con't)

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...

 $DFA \rightarrow RE$ (Not part of the scanner construction)

- All pairs, all paths problem
- Take the union of all paths from s_0 to an accepting state

Need to build a simulation of the NFA

Two key functions

- $Move(s_i, \underline{a})$ is the set of states reachable from s_i by \underline{a}
- ε -closure(s_i) is the set of states reachable from s_i by ε

The algorithm:

- Start state derived from s₀ of the NFA
- Take its ε -closure $S_0 = \varepsilon$ -closure({ s_0 })
- Take the image of S₀, Move(S₀, α) for each $\alpha\in\Sigma$, and take its ϵ -closure
- Iterate until no more states are added

Sounds more complex than it is...

The algorithm:

 $s_{o} \leftarrow \varepsilon \text{-closure}(\{n_{o}\})$ $S \leftarrow \{s_{o}\}$ $W \leftarrow \{s_{o}\}$ while ($W \neq \emptyset$)
select and remove s from W
for each $\alpha \in \Sigma$ $t \leftarrow \varepsilon \text{-closure}(Move(s,\alpha))$ $T[s,\alpha] \leftarrow t$ if ($t \notin S$) then
add t to S
add t to W

Let's think about why this works

The algorithm halts:

- 1. S contains no duplicates (test before adding)
- 2. 2^{NFA states} is finite
- *3.* while loop adds to *S*, but does not remove from *S (monotone)*

 \Rightarrow the loop halts

S contains all the reachable NFA states

It tries each character in each s_i.

It builds every possible NFA configuration.

 \Rightarrow S and T form the DFA

This test is a little tricky

The algorithm:

 $s_{o} \leftarrow \varepsilon\text{-closure}(\{n_{o}\})$ $S \leftarrow \{s_{o}\}$ $W \leftarrow \{s_{o}\}$ while ($W \neq \emptyset$)
select and remove s from W
for each $\alpha \in \Sigma$ $t \leftarrow \varepsilon\text{-closure}(Move(s,\alpha))$ $T[s,\alpha] \leftarrow t$ if ($t \notin S$) then
add t to S
add t to W

Let's think about why this works

The algorithm halts:

- 1. S contains no duplicates (test before adding)
- 2. 2^{NFA states} is finite
- *3.* while loop adds to *S*, but does not remove from *S (monotone)*

 \Rightarrow the loop halts

S contains all the reachable NFA states

It tries each character in each s_i.

It builds every possible NFA configuration.

 \Rightarrow S and T form the DFA

Any DFA state containing an NFA final state becomes a DFA final state. 17

Comp 412 Fall 2005

Example of a *fixed-point* computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting & correctness are similar
- These computations arise in many contexts

Other fixed-point computations

- Canonical construction of sets of LR(1) items
 - Quite similar to the subset construction
- Classic data-flow analysis (& Gaussian Elimination)
 - Solving sets of simultaneous set equations

We will see many more fixed-point computations

Comp 412 Fall 2005

		ε-closure(Move(s,*))		
	NFA states	<u>a</u>	b	<u>c</u>
S 0	$oldsymbol{q}_o$	q ₁ , q ₂ , q ₃ , q ₄ , q ₆ , q ₉	none	none
S ₁	$q_1, q_2, q_3, q_4, q_6, q_9$	none	q ₅ , q ₈ , q ₉ , q ₃ , q ₄ , q ₆	q ₇ , q ₈ , q ₉ , q ₃ , q ₄ , q ₆
S ₂	$q_5, q_8, q_9, q_3, q_3, q_4, q_6$	none	s ₂	S ₃
S 3	$q_7, q_8, q_9, q_9, q_3, q_4, q_6$	none	S ₂	S ₃
Final states				

Comp 412 Fall 2005

The DFA for $\underline{a} (\underline{b} | \underline{c})^*$

• Ends up smaller than the NFA

E-transitions mess up the cost model, anyway

- All transitions are deterministic 🗲
- Use same code skeleton as before

Where are we? Why are we doing this?

 $RE \rightarrow NFA$ (Thompson's construction) \checkmark

- Build an NFA for each term
- Combine them with ϵ -moves

NFA \rightarrow DFA (subset construction) \checkmark

Build the simulation

$DFA \rightarrow Minimal DFA \leftarrow$

Hopcroft's algorithm

$\mathsf{DFA} \rightarrow \mathsf{RE}$

- All pairs, all paths problem
- Union together paths from s_o to a final state

Enough theory for today

