
Lexical Analysis - An Introduction

COMP 412
Fall 2005

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

COMP 412, Fall 2002 2Comp 412 Fall 2005

The Front End

The purpose of the front end is to deal with the input language
• Perform a membership test: code ∈ source language?
• Is the program well-formed (semantically) ?
• Build an IR version of the code for the rest of the compiler

The front end is not monolithic

Source
code

Front
End

Errors

Machine
code

Back
End

IR

COMP 412, Fall 2002 3Comp 412 Fall 2005

The Front End

Implementation Strategy
• Specify syntax in a formal notation

— regular expressions in scanning, context-free grammars in parsing
• Simulate an automaton to recognize valid strings

— finite automata, push-down automata (COMP 481)

• Automate construction of the simulations
— table-driven simulations or direct-coded simulations

• Add “actions” to automaton to create representations

Source
code Scanner

IR
Parser

Errors

tokens

COMP 412, Fall 2002 4Comp 412 Fall 2005

The Front End

Why separate the scanner and the parser?
• Scanner classifies words
• Parser constructs grammatical derivations
• Parsing is harder and slower
• Separation simplifies implementation

— smaller grammar for parser
— faster front end

token is a pair
<part of speech, lexeme >

stream of
characters Scanner

IR +
annotations

Parser

Errors

stream of
tokensmicrosyntax syntax

COMP 412, Fall 2002 5Comp 412 Fall 2005

The Big Picture
The front end deals with syntax

• Language syntax is specified with parts of speech, not words

• Syntax checking matches parts of speech against a grammar

1. goal → expr

2. expr → expr op term
3. | term

4. term → number

5. | id

6. op → +

7. | –

S = goal

T = { number, id, +, - }

N = { goal, expr, term, op }

P = { 1, 2, 3, 4, 5, 6, 7 }

also called syntactic
categories or tokentypes

parts of speech
syntactic variables

Simple expression grammar from lecture 2

The scanner turns a stream of

characters into a stream of words,

classified with their part of speech.

COMP 412, Fall 2002 6Comp 412 Fall 2005

The Big Picture
Why study scanner construction?

• We want to avoid writing scanners by hand

• We want to harness the theory from classes like COMP 481

Goals:
• To simplify specification & implementation of scanners

• To understand the underlying techniques and technologies

Scanner
Generator

specifications

Scanner
source code parts of speech & words

Specifications written as
“regular expressions”

Represent
words as

indices into
a global table

tables
or code

design
time

compile
time

COMP 412, Fall 2002 7Comp 412 Fall 2005

 These definitions should be well known

Set Operations (review)

Operation Definition

Union of L and M
written L ! M

L ! M = {s | s " L or s " M }

Concatenation of
 L and M

written LM

LM = {st | s " L and t " M }

Kleene closure of L
written L*

L* = !0#i#$ L
i

Positive closure of L
written L+

L+ = !1#i#$ L
i

COMP 412, Fall 2002 8Comp 412 Fall 2005

Regular Expressions
We constrain programming languages so that the spelling of a
word always implies its part of speech (few exceptions)

The rules or patterns that impose this maping form a regular language

Regular expressions (REs) describe regular languages

Regular Expression (over alphabet Σ)

• ε is a RE denoting the set {ε}

• If a is in Σ, then a is a RE denoting {a}

• If x and y are REs denoting L(x) and L(y) then

— x |y is an RE denoting L(x) ∪ L(y)
— xy is an RE denoting L(x)L(y)
— x* is an RE denoting L(x)*

Precedence is closure,
then concatenation,
then alternation

COMP 412, Fall 2002 9Comp 412 Fall 2005

Regular Expressions
How do these operators help?

Regular Expression (over alphabet Σ)

• ε is a RE denoting the set {ε}

• If a is in Σ, then a is a RE denoting {a}
→ the spelling of a word is an RE

• If x and y are REs denoting L(x) and L(y) then

— x |y is an RE denoting L(x) ∪ L(y)

→ any finite list of words can be written as an RE (w0 | w1 | … | wn)
— xy is an RE denoting L(x)L(y)
— x* is an RE denoting L(x)*

→ we can use concatenation & closure to write more concise patterns
and to specify infinite sets that have finite descriptions

COMP 412, Fall 2002 10Comp 412 Fall 2005

Examples of Regular Expressions

Identifiers:
Letter → (a|b|c| … |z|A|B|C| … |Z)

Digit → (0|1|2| … |9)

Identifier → Letter (Letter | Digit)*

Numbers:
Integer → (+|-|ε) (0| (1|2|3| … |9)(Digit *))

Decimal → Integer . Digit *

Real → (Integer | Decimal) E (+|-|ε) Digit *

Complex → (Real , Real)

Numbers can get much more complicated!

underlining indicates
a letter in the input
stream

shorthand
for

(a|b|c| … |z|A|B|C| … |Z) ((a|b|c| … |z|A|B|C| … |Z) | (0|1|2| … |9))*

COMP 412, Fall 2002 11Comp 412 Fall 2005

Regular Expressions (the point)

We use regular expressions ����to specify the mapping of
words to parts of speech for the lexical analyzer

Using results from automata theory and theory of algorithms,
we can automate construction of recognizers from REs

⇒We study REs and associated theory to automate scanner
construction !

⇒Fortunately, the automatic techiques lead to fast scanners
→ used in text editors, URL filtering software, …

COMP 412, Fall 2002 12Comp 412 Fall 2005

Consider the problem of recognizing ILOC register names

Register → r (0|1|2| … | 9) (0|1|2| … | 9)*

• Allows registers of arbitrary number
• Requires at least one digit

RE corresponds to a recognizer (or DFA)

Transitions on other inputs go to an error state, se

Example (from Lab 1)

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

COMP 412, Fall 2002 13Comp 412 Fall 2005

DFA operation
• Start in state S0 & make transitions on each input character
• DFA accepts a word x iff x leaves it in a final state (S2)

So,
• r17 takes it through s0, s1, s2 and accepts
• r takes it through s0, s1 and fails
• a takes it straight to se

Example (continued)

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

COMP 412, Fall 2002 14Comp 412 Fall 2005

Example (continued)

To be useful, the recognizer must be converted into code

sesesese

ses2ses2

ses2ses1

seses1s0

All
others

0,1,2,3,4,
5,6,7,8,9rδ

Char ← next character
State ← s0

while (Char ≠ EOF)
 State ← δ(State,Char)
 Char ← next character

if (State is a final state)
 then report success
 else report failure

Skeleton recognizer Table encoding the RE

O(1) cost per character (or per transition)

COMP 412, Fall 2002 15Comp 412 Fall 2005

Example (continued)

We can add “actions” to each transition

se
error

se
error

se
error

se

se
error

s2
add

se
error

s2

se
error

s2
add

se
error

s1

se
error

se
error

s1
start

s0

All
others

0,1,2,3,4,
5,6,7,8,9r

δ
α

Char ← next character
State ← s0

while (Char ≠ EOF)
 Next ← δ(State,Char)
 Act ← α(State,Char)
 perform action Act
 State ← Next
 Char ← next character

if (State is a final state)
 then report success
 else report failure

Skeleton recognizer
Table encoding RE

Typical action is to capture the lexeme

COMP 412, Fall 2002 16Comp 412 Fall 2005

r Digit Digit* allows arbitrary numbers
• Accepts r00000
• Accepts r99999
• What if we want to limit it to r0 through r31 ?

Write a tighter regular expression
— Register → r ((0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31))

— Register → r0|r1|r2| … |r31|r00|r01|r02| … |r09

Produces a more complex DFA

• DFA has more states
• DFA has same cost per transition (or per character)
• DFA has same basic implementation

What if we need a tighter specification?

