
The View from 35,000 Feet

COMP 412
Rice University

Fall 2004

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

COMP 412, Fall 2005Comp 412 Fall 2004

Implications
• Must recognize legal (and illegal) programs
• Must generate correct code
• Must manage storage of all variables (and code)
• Must agree with OS & linker on format for object code

Big step up from assembly language—use higher level notations

High-level View of a Compiler

Source
code

Machine
code

Compiler

Errors

COMP 412, Fall 2005Comp 412 Fall 2004

Traditional Two-pass Compiler

Implications
• Use an intermediate representation (IR)
• Front end maps legal source code into IR

• Back end maps IR into target machine code
• Admits multiple front ends & multiple passes (better code)

Typically, front end is O(n) or O(n log n), while back end is NPC

Source
code

Front
End

Errors

Machine
code

Back
End

IR

COMP 412, Fall 2005Comp 412 Fall 2004

Can we build n x m compilers with n+m components?
• Must encode all language specific knowledge in each front end
• Must encode all features in a single IR
• Must encode all target specific knowledge in each back end

Limited success in systems with very low-level IRs

A Common Fallacy

Fortran

Scheme

Java

Smalltalk

Front
end

Front
end

Front
end

Front
end

Back
end

Back
end

Target 2

Target 1

Target 3Back
end

COMP 412, Fall 2005Comp 412 Fall 2004

Responsibilities
• Recognize legal (& illegal) programs
• Report errors in a useful way
• Produce IR & preliminary storage map
• Shape the code for the rest of the compiler
• Much of front end construction can be automated

The Front End

Source
code Scanner

IR
Parser

Errors

tokens

COMP 412, Fall 2005Comp 412 Fall 2004

The Front End

Scanner
• Maps character stream into words—the basic unit of syntax
• Produces pairs — a word & its part of speech

x = x + y ; becomes <id,x> = <id,x> + <id,y> ;
— word ≅ lexeme, part of speech ≅ token type
— In casual speech, we call the pair a token

• Typical tokens include number, identifier, +, –, new, while, if
• Scanner eliminates white space (including comments)
• Speed is important

Source
code Scanner

IR
Parser

Errors

tokens

COMP 412, Fall 2005Comp 412 Fall 2004

The Front End

Parser
• Recognizes context-free syntax & reports errors
• Guides context-sensitive (“semantic”) analysis (type checking)
• Builds IR for source program

Hand-coded parsers are fairly easy to build

Most books advocate using automatic parser generators

Source
code Scanner

IR
Parser

Errors

tokens

COMP 412, Fall 2005Comp 412 Fall 2004

The Front End

Context-free syntax is specified with a grammar

SheepNoise → SheepNoise baa
 | baa

This grammar defines the set of noises that a sheep makes
under normal circumstances

It is written in a variant of Backus–Naur Form (BNF)

Formally, a grammar G = (S,N,T,P)
• S is the start symbol
• N is a set of non-terminal symbols
• T is a set of terminal symbols or words
• P is a set of productions or rewrite rules (P : N → N ∪T)

(Example due to Dr. Scott K. Warren)

COMP 412, Fall 2005Comp 412 Fall 2004

Context-free syntax can be put to better use

• This grammar defines simple expressions with addition &
subtraction over “number” and “id”

• This grammar, like many, falls in a class called “context-free
grammars”, abbreviated CFG

The Front End

1. goal → expr

2. expr → expr op term

3. | term
4. term → number

5. | id
6. op → +

7. | -

S = goal

T = { number, id, +, - }

N = { goal, expr, term, op }

P = { 1, 2, 3, 4, 5, 6, 7}

COMP 412, Fall 2005Comp 412 Fall 2004

Given a CFG, we can derive sentences by repeated substitution

To recognize a valid sentence in some CFG, we reverse this
process and build up a parse

The Front End

Production Result
 goal

1 expr
2 expr op term
5 expr op y
7 expr - y
2 expr op term - y
4 expr op 2 - y
6 expr + 2 - y
3 term + 2 - y
5 x + 2 - y

1. goal → expr

2. expr → expr op term

3. | term
4. term → number

5. | id
6. op → +

7. | -

COMP 412, Fall 2005Comp 412 Fall 2004

The Front End

A parse can be represented by a tree (parse tree or syntax tree)

x + 2 - y

This contains a lot of unneeded
information.

term

op termexpr

termexpr

goal

expr

op

<id,x>

<number,2>

<id,y>

+

-

1. goal → expr

2. expr → expr op term

3. | term
4. term → number

5. | id
6. op → +

7. | -

COMP 412, Fall 2005Comp 412 Fall 2004

The Front End

Compilers often use an abstract syntax tree

This is much more concise

ASTs are one kind of intermediate representation (IR)

+

-

<id,x> <number,2>

<id,y> The AST summarizes
grammatical
structure, without
including detail about
the derivation

COMP 412, Fall 2005Comp 412 Fall 2004

Code shape determines many properties of resulting program

The Front End

Source
code Scanner

IR
Parser

Errors

tokens

a ← b x c + d
becomes

←

a +

dx

b c

COMP 412, Fall 2005Comp 412 Fall 2004

Code shape determines many properties of resulting program

The Front End

Source
code Scanner

IR
Parser

Errors

tokens

a ← b x c + d
e ← f + b x c + d

becomes

If you turn this AST into code,
you will likely get duplication

←

a +

dx

b c

←

e

+

dx

b c

+

f

seq

COMP 412, Fall 2005Comp 412 Fall 2004

Code shape determines many properties of resulting program

The Front End

Source
code Scanner

IR
Parser

Errors

tokens

a ← b x c + d
e ← f + b x c + d

becomes

load @b ⇒ r1
load @c ⇒ r2
mult r1,r2 ⇒ r3
load @d ⇒ r4
add r3,r4 ⇒ r5
store r5 ⇒ @a
load @f ⇒ r6
add r5,r6 ⇒ r7
store r7 ⇒ @e

reuses
b x c + d

We might like to produce this
code, but getting it right takes a
fair amount of effort ….

Is a distinct from b, c, & d ?

computes
b x c + d

COMP 412, Fall 2005Comp 412 Fall 2004

The Back End

Responsibilities
• Translate IR into target machine code
• Choose instructions to implement each IR operation
• Decide which value to keep in registers
• Ensure conformance with system interfaces

Automation has been less successful in the back end

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

COMP 412, Fall 2005Comp 412 Fall 2004

The Back End

Instruction Selection
• Produce fast, compact code
• Take advantage of target features such as addressing modes
• Usually viewed as a pattern matching problem

— ad hoc methods, pattern matching, dynamic programming

This was the problem of the future in 1978
— Spurred by transition from PDP-11 to VAX-11
— Orthogonality of RISC simplified this problem

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

COMP 412, Fall 2005Comp 412 Fall 2004

The Back End

Register Allocation

• Have each value in a register when it is used
• Manage a limited set of resources
• Can change instruction choices & insert LOADs & STOREs
• Optimal allocation is NP-Complete (1 or k registers)

Compilers approximate solutions to NP-Complete problems

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

You will become experts over next 3 weeks…

COMP 412, Fall 2005Comp 412 Fall 2004

The Back End

Instruction Scheduling
• Avoid hardware stalls and interlocks
• Use all functional units productively
• Can increase lifetime of variables (changing the allocation)

Optimal scheduling is NP-Complete in nearly all cases

Heuristic techniques are well developed

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

COMP 412, Fall 2005Comp 412 Fall 2004

The Back End

Instruction Scheduling
Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

 unit 1 unit 2 .
load @b ⇒ r1 load @c ⇒ r2
load @d ⇒ r4 load @f ⇒ r6
mult r1,r2 ⇒ r3 nop
add r3,r4 ⇒ r5 nop
store r5 ⇒ @a nop
add r5,r6 ⇒ r7 nop
store r7 ⇒ @e nop

This schedule aggressively loads
values into registers to cover the
memory latency.

It finishes the computation as
soon as possible (assuming 2 cycles
for load & store, 1 cycle for other
operations.

COMP 412, Fall 2005Comp 412 Fall 2004

The Back End

Instruction Scheduling (assume 2 cycle load)
Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

 unit 1 unit 2 .
load @b ⇒ r1 load @c ⇒ r2
load @d ⇒ r4 load @f ⇒ r6
mult r1,r2 ⇒ r3 nop
add r3,r4 ⇒ r5 nop
store r5 ⇒ @a nop
add r5,r6 ⇒ r7 nop
store r7 ⇒ @e nop

 unit 1 unit 2 .
load @b ⇒ r1 load @c ⇒ r2
load @d ⇒ r4 nop
mult r1,r2 ⇒ r3 nop
add r3,r4 ⇒ r5 load @f ⇒ r6
store r5 ⇒ @a nop
add r5,r6 ⇒ r7 nop
store r7 ⇒ @e nop

This schedule uses fewer registers
without slowing down the code

COMP 412, Fall 2005Comp 412 Fall 2004

Traditional Three-pass Compiler

Code Improvement (or Optimization)
• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled code

— May also improve space, power consumption, …
• Must preserve “meaning” of the code

— Measured by values of named variables

Subject of COMP 512, 515, maybe final weeks of 412

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

COMP 412, Fall 2005Comp 412 Fall 2004

The Optimizer (or Middle End)

Typical Transformations
• Discover & propagate some constant value
• Move a computation to a less frequently executed place
• Specialize some computation based on context
• Discover a redundant computation & remove it
• Remove useless or unreachable code
• Encode an idiom in some particularly efficient form

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

COMP 412, Fall 2005Comp 412 Fall 2004

Example

 Optimization of Subscript Expressions

Example assumes column-major order; an
equivalent issue arises with row major order

Address(A(I,J)) = address(A(0,0)) + J * (column size) + I

Does the user realize that a
multiplication is generated here?

DO I = 1, M
 A(I,J) = A(I,J) + C
ENDDO

compute addr(A(0,J))
DO I = 1, M
 add 1 to get addr(A(I,J))
 A(I,J) = A(I,J) + C
ENDDO

Strength

 reduction

COMP 412, Fall 2005Comp 412 Fall 2004

Role of the Run-time System

• Memory management services
— Allocate

– In the heap or in an activation record (stack frame)
— Deallocate
— Collect garbage

• Run-time type checking
• Error processing
• Interface to the operating system

— Input and output

• Support of parallelism
— Parallel thread initiation
— Communication and synchronization

COMP 412, Fall 2005Comp 412 Fall 2004

Next Class

• Introduction to Local Register Allocation

• Announcements:
— Specs for Lab 1 available by Monday, August 26

– Due Sept 15 (documentation 1 day later)
– Practice blocks and simulator will be available
– Grading blocks will be hidden from you

