
COMP 412
Overview of the Course

Copyright 2005, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

COMP 412, Fall 2002Comp 412 Fall 2004

Critical Facts

COMP 412 — Introduction to Compiler Construction

• Instructor: Keith Cooper <keith@rice.edu>

• Office Hours: TBD, DH 2065 or DH 3131
• Text: Engineering a Compiler (Cooper and Torczon)

— Published by Morgan-Kaufmann
— Royalties for sales to COMP 412 go to the Torczon Fellowship

at Rice, which awards a fellowship to a Rice CS undergrad

• Web Site: http://owlnet.rice.edu/~comp412
— Lab handouts, homework, slides, practice exams, …
— I will not have handouts in class; get them from the web

Topics in the design of programming language translators,
including parsing, run-time storage management, error
recovery, code generation, and optimization

COMP 412, Fall 2002Comp 412 Fall 2004

Basis for Grading

• Exams
— Midterm 25%
— Final 25%

• Homework 5%

• Projects
— Register allocator 15%
— Parser (& scanner) 15%
— Instruction scheduler 15%

Notice: Any student with a disability requiring accommodations in this
class is encouraged to contact me after class or during office hours,
and to contact Rice’s Coordinator for Disabled Student Services.

This stuff will total 55% of
the course credit. If I
assign more homework than
in the past, I may shift the
percentages by up to 5%

COMP 412, Fall 2002Comp 412 Fall 2004

Basis for Grading

• Exams
— Midterm
— Final

• Homework

• Projects
— Register allocator
— Parser (& scanner)
— Instruction scheduler

 Closed-notes, closed-book take home

 Old exam on web site as an example

 Reinforce concepts, provide practice

 Number of assignments t.b.d.

 High ratio of thought to programming

 Parser lab might be a team lab

 Choose your own language (not PERL)

COMP 412, Fall 2002Comp 412 Fall 2004

Rough Syllabus

• Overview § 1

• Local Register Allocation § 13.2

• Scanning § 2

• Parsing § 3

• Context Sensitive Analysis § 4

• Inner Workings of Compiled Code § 6, 7

• Introduction to Optimization § 8

• Code Selection § 11

• Instruction Scheduling § 12

• Register Allocation § 13

• More Optimization (time permitting)

If it looks like
the course follows
the text, that’s
because the text
was written from
the course.

What about the
missing chapters?

5 : We’ll fit it in
9, 10: see CS 512

COMP 412, Fall 2002Comp 412 Fall 2004

Class-taking technique for COMP 412

• I will use projected material extensively
— But I will try to stimulate discussion

• Read the book
— Not all material will be covered in class

• Come to class
— The tests will cover both lecture and reading
— I will probably hint at good test questions in class

• Do the programming assignments
— COMP 412 is not a programming course

– Projects are graded on functionality, documentation, and
lab reports, not style (results matter)

• Do the homework
— Good practice for the tests

COMP 412, Fall 2002Comp 412 Fall 2004

About the Book

• Textbook: “Engineering a Compiler”
— By Keith D. Cooper and Linda M. Torczon

– Both at Rice

• Book presents modern material
— Considers problems of post-1986 computers
— Addresses modern techniques
— Discards lots of less relevant material

• Other textbooks on reserve in Fondren Library
— Consult them for alternate views

COMP 412, Fall 2002Comp 412 Fall 2004

Compilers

• What is a compiler?
— A program that translates an executable program in one

language into an executable program in another language
— The compiler should improve the program, in some way

• What is an interpreter?
— A program that reads an executable program and produces the

results of executing that program

• C is typically compiled, Scheme is typically interpreted

• Java is compiled to bytecodes (code for the Java VM)
— which are then interpreted
— Or a hybrid strategy is used

– Just-in-time compilation

COMP 412, Fall 2002Comp 412 Fall 2004

Taking a Broader View

• Compiler Technology = Off-Line Processing
— Goals: improved performance and language usability

– Making it practical to use the full power of the language
— Trade-off: preprocessing time versus execution time (or space)
— Rule: performance of both compiler and application must be

acceptable to the end user

• Examples
— Macro expansion

– PL/I macro facility — 10x improvement with compilation
— Database query optimization
— Emulation acceleration

– TransMeta “code morphing”

COMP 412, Fall 2002Comp 412 Fall 2004

Why Study Compilation?

• Compilers are important
— Responsible for many aspects of system performance

• Compilers are interesting
— Compilers include many applications of theory to practice
— Writing a compiler exposes practical algorithmic & engineering

issues

• Compilers are everywhere
— Many practical applications have embedded languages

– Commands, macros, formatting tags …
— Many applications have input formats that look like languages

COMP 412, Fall 2002Comp 412 Fall 2004

Intrinsic merit

 Compiler construction poses challenging and interesting
problems:

— Compilers must do a lot but also run quickly

— Compilers have primary responsibility for run-time performance

— Compilers are responsible for making it acceptable to use the
full power of the programming language

— Computer architects perpetually create new challenges for the
compiler by building more complex machines

– Compilers must hide that complexity from the programmer

 A successful compiler requires mastery of the many
complex intereactions between its constituent parts

COMP 412, Fall 2002Comp 412 Fall 2004

Making Languages Usable

It was our belief that if FORTRAN, during its first months,
were to translate any reasonable “scientific” source program
into an object program only half as fast as its hand-coded
counterpart, then acceptance of our system would be in serious
danger... I believe that had we failed to produce efficient
programs, the widespread use of languages like FORTRAN would
have been seriously delayed.

— John Backus

COMP 412, Fall 2002Comp 412 Fall 2004

Intrinsic interest

 Compiler construction involves ideas from many different
parts of computer science

Artificial intelligence
Greedy algorithms
Heuristic search techniques

Algorithms Graph algorithms, union-find
Dynamic programming

Theory
DFAs & PDAs, pattern matching
Fixed-point algorithms

Systems
Allocation & naming,
Synchronization, locality

Architecture Pipeline & hierarchy management
Instruction set use

COMP 412, Fall 2002Comp 412 Fall 2004

About the Instructor

My own research program
• Compiling for advanced microprocessor systems

— Optimization for space, power, & speed

• Whole program analysis & optimization
• Relationship between compiler structure & effectiveness
• Nitty-gritty things that happen in compiler back ends

Thus, my interests lie in
• Quality of generated code
• Interplay between compiler and architecture
• Static analysis to discern program behavior
• Run-time performance analysis

COMP 412, Fall 2002Comp 412 Fall 2004

 Next class

• The view from 35,000 feet
— How a compiler works
— What is important
— What is hard and what is easy

• Things to do
— Make sure you have a working OwlNet account
— Find the web site

www.owlnet.rice.edu/~comp412

