
Intermediate Representations

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these
materials for their personal use.

Intermediate Representations

• Front end - produces an intermediate representation (IR)
• Middle end - transforms the IR into an equivalent IR that

runs more efficiently
• Back end - transforms the IR into native code

• IR encodes the compiler’s knowledge of the program
• Middle end usually consists of several passes

Front
End

Middle
End

Back
End

IR IRSource
Code

Target
Code

Intermediate Representations

• Decisions in IR design affect the speed and efficiency
 of the compiler

• Some important IR properties
→ Ease of generation
→ Ease of manipulation
→ Procedure size
→ Freedom of expression
→ Level of abstraction

• The importance of different properties varies between
compilers

→ Selecting an appropriate IR for a compiler is critical

Types of Intermediate Representations
Three major categories
• Structural

→ Graphically oriented
→ Heavily used in source-to-source translators
→ Tend to be large

• Linear
→ Pseudo-code for an abstract machine
→ Level of abstraction varies
→ Simple, compact data structures
→ Easier to rearrange

• Hybrid
→ Combination of graphs and linear code
→ Example: control-flow graph

Examples:
Trees, DAGs

Examples:
3 address code
Stack machine code

Example:
Control-flow graph

Level of Abstraction

• The level of detail exposed in an IR influences the
profitability and feasibility of different optimizations.

• Two different representations of an array reference:

subscript

A i j

loadI 1 => r1

sub rj, r1 => r2

loadI 10 => r3

mult r2, r3 => r4

sub ri, r1 => r5

add r4, r5 => r6

loadI @A => r7

Add r7, r6 => r8

load r8 => rAij

High level AST:
Good for memory
disambiguation

Low level linear code:
Good for address calculation

Level of Abstraction

• Structural IRs are usually considered high-level
• Linear IRs are usually considered low-level
• Not necessarily true:

+

*

10

j 1

- j 1

-

+

@A

load

Low level AST loadArray A,i,j

High level linear code

Abstract Syntax Tree

An abstract syntax tree is the procedure’s parse tree with
 the nodes for most non-terminal nodes removed

 x - 2 * y
• Can use linearized form of the tree

→ Easier to manipulate than pointers
x 2 y * - in postfix form
- * 2 y x in prefix form

• S-expressions are (essentially) ASTs

-

x

2 y

*

Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique
 node for each value

• Makes sharing explicit
• Encodes redundancy

x

2 y

*

-

←

z /

←

w

z ← x - 2 * y
w ← x / 2

Same expression twice means
that the compiler might arrange
to evaluate it just once!

Stack Machine Code

Originally used for stack-based computers, now Java
• Example:

x - 2 * y becomes

Advantages
• Compact form
• Introduced names are implicit, not explicit
• Simple to generate and execute code

Useful where code is transmitted
over slow communication links (the net)

push x
push 2
push y
multiply
subtract

Implicit names take up
no space, where explicit
ones do!

Several different representations of three address code
• In general, three address code has statements of the form:

x ← y op z
With 1 operator (op) and, at most, 3 names (x, y, & z)

Example:
z ← x - 2 * y becomes

Advantages:
• Resembles many machines
• Introduces a new set of names
• Compact form

Three Address Code

t ← 2 * y
z ← x - t

*

Three Address Code: Quadruples

Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

245sub

X4load

123mult

22loadi

Y1loadload r1, y
loadI r2, 2
mult r3, r2, r1
load r4, x
sub r5, r4, r3

RISC assembly code Quadruples

The original FORTRAN
compiler used “quads”

Three Address Code: Triples

• Index used as implicit name
• 25% less space consumed than quads
• Much harder to reorder

(3)(4)sub

xload

(2)(1)mult

2loadI

yload(1)

(2)

(3)

(4)

(5)

Implicit names take no space!

Three Address Code: Indirect Triples

• List first triple in each statement
• Implicit name space
• Uses more space than triples, but easier to reorder

• Major tradeoff between quads and triples is compactness
versus ease of manipulation

→ In the past compile-time space was critical
→ Today, speed may be more important

(102)(103)sub
xload

(101)(100)mult
2loadI
yload(100)

(101)

(102)

(103)

(104)

(100)

(105)

• The main idea: each name defined exactly once
• Introduce φ-functions to make it work

Strengths of SSA-form
• Sharper analysis
• φ-functions give hints about placement
• (sometimes) faster algorithms

Static Single Assignment Form

 Original

x ← 0
y ← 0
while (x < k)
 x ← x + 1
 y ← y + x

SSA-form

 x0 ← 0

 y0 ← 0
 if (x0 > k) goto next

loop: x1 ← φ(x0,x2)

 y1 ← φ(y0,y2)

 x2 ← x1 + 1

 y2 ← y1 + x2

 if (x2 < k) goto loop
next: …

Two Address Code

• Allows statements of the form
x ← x op y

Has 1 operator (op) and, at most, 2 names (x and y)

Example:
 z ← x - 2 * y becomes

• Can be very compact

Problems
• Machines no longer rely on destructive operations
• Difficult name space

→ Destructive operations make reuse hard
→ Good model for machines with destructive ops (PDP-11)

t1 ← 2

t2 ← load y

t2 ← t2 * t1

z ← load x

z ← z - t2

Control-flow Graph

Models the transfer of control in the procedure
• Nodes in the graph are basic blocks

→ Can be represented with quads or any other linear
representation

• Edges in the graph represent control flow

Example
if (x = y)

a ← 2
b ← 5

a ← 3
b ← 4

c ← a * b

Basic blocks —
Maximal length
sequences of
straight-line code

Using Multiple Representations

• Repeatedly lower the level of the intermediate
representation

→ Each intermediate representation is suited towards certain
optimizations

• Example: the Open64 compiler
→ WHIRL intermediate format

♦ Consists of 5 different IRs that are progressively more
detailed

Front
End

Middle
End

Back
End

IR 1 IR 3Source
Code

Target
Code

Middle
End

IR 2

Memory Models

Two major models
• Register-to-register model

→ Keep all values that can legally be stored in a register in registers
→ Ignore machine limitations on number of registers
→ Compiler back-end must insert loads and stores

• Memory-to-memory model
→ Keep all values in memory
→ Only promote values to registers directly before they are used
→ Compiler back-end can remove loads and stores

• Compilers for RISC machines usually use register-to-register
→ Reflects programming model
→ Easier to determine when registers are used

The Rest of the Story…

Representing the code is only part of an IR

There are other necessary components
• Symbol table (already discussed)
• Constant table

→ Representation, type
→ Storage class, offset

• Storage map
→ Overall storage layout
→ Overlap information
→ Virtual register assignments

