
Context-sensitive Analysis

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these
materials for their personal use.

Beyond Syntax

There is a level of correctness that is deeper than grammar

fie(a,b,c,d)
int a, b, c, d;

{ … }

fee() {
int f[3],g[0],
h, i, j, k;

 char *p;
fie(h,i,“ab”,j, k);
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,
p,q);

p = 10;
}

What is wrong with this program?
(let me count the ways …)

Beyond Syntax

There is a level of correctness that is deeper than grammar

To generate code, we need to understand its meaning !

fie(a,b,c,d)
int a, b, c, d;

{ … }

fee() {
int f[3],g[0],
h, i, j, k;

 char *p;
fie(h,i,“ab”,j, k);
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,
p,q);

p = 10;
}

What is wrong with this program?
(let me count the ways …)

• declared g[0], used g[17]

• wrong number of args to fie()

• “ab” is not an int

• wrong dimension on use of f

• undeclared variable q

• 10 is not a character string

All of these are
“deeper than syntax”

Beyond Syntax

To generate code, the compiler needs to answer many questions
• Is “x” a scalar, an array, or a function? Is “x” declared?
• Are there names that are not declared? Declared but not used?
• Which declaration of “x” does each use reference?
• Is the expression “x * y + z” type-consistent?
• In “a[i,j,k]”, does a have three dimensions?
• Where can “z” be stored? (register, local, global, heap, static)
• In “f ← 15”, how should 15 be represented?
• How many arguments does “fie()” take? What about “printf ()” ?
• Does “*p” reference the result of a “malloc()” ?
• Do “p” & “q” refer to the same memory location?
• Is “x” defined before it is used?

These are beyond a CFG

Beyond Syntax

These questions are part of context-sensitive analysis
• Answers depend on values, not parts of speech
• Questions & answers involve non-local information
• Answers may involve computation

How can we answer these questions?
• Use formal methods

→ Context-sensitive grammars?
→ Attribute grammars? (attributed grammars?)

• Use ad-hoc techniques
→ Symbol tables
→ Ad-hoc code (action routines)

In scanning & parsing, formalism won; different story here.

Beyond Syntax

Telling the story
• The attribute grammar formalism is important

→ Succinctly makes many points clear
→ Sets the stage for actual, ad-hoc practice

• The problems with attribute grammars motivate practice
→ Non-local computation
→ Need for centralized information

• Some folks still argue for attribute grammars
→ Knowledge is power
→ Information is immunization

We will cover attribute grammars, then move on to ad-hoc ideas

Attribute Grammars

What is an attribute grammar?
• A context-free grammar augmented with a set of rules
• Each symbol in the derivation has a set of values, or

attributes
• The rules specify how to compute a value for each attribute

Example grammar

This grammar describes
signed binary numbers

We would like to augment it
with rules that compute the
decimal value of each valid
input string

Number → Sign List
Sign → +

| –
List → List Bit

| Bit
Bit → 0

| 1

Examples

We will use these two throughout the lecture

Number → Sign List
→ – List
→ – Bit
→ – 1

Number

List

Bit

1

Sign

–

For “–1”

Number → Sign List
→ Sign List Bit
→ Sign List 1
→ Sign List Bit 1
→ Sign List 1 1
→ Sign Bit 0 1
→ Sign 1 0 1
→ – 101

Number

ListSign

– Bit

1

List

Bit

0

List

Bit

1

For “–101”

Attribute Grammars

Add rules to compute the decimal value of a signed binary number

Productions Attribution Rules

Number → Sign List
Sign → +

| –

→

| Bit
Bit → 0

| 1

List.pos ← 0
If Sign.neg

 then Number.val ← – List.val
 else Number.val ← List.val
Sign.neg ← false
Sign.neg ← true

List0 List1 Bit

List1.pos ← List0.pos + 1

Bit.pos ← List0.pos

List0.val ← List1.val + Bit.val

Bit.pos ← List.pos
List.val ← Bit.val
Bit.val ← 0
Bit.val ← 2Bit.pos

Back to the Examples

Number

List

Bit

1

Sign

–

neg ←
true

Bit.pos ← 0
Bit.val ← 2Bit.pos ≡
1

List.pos ← 0
List.val ← Bit.val ≡
1

Number.val ← – List.val
≡ –1

For “–1” One possible evaluation order:

1 List.pos
2 Sign.neg
3 Bit.pos
4 Bit.val
5 List.val
6 Number.val

Other orders are possible

Knuth suggested a data-flow model for evaluation

• Independent attributes first

• Others in order as input values become available

Rules + parse tree imply
an attribute dependence
graph

Evaluation order
must be consistent
with the attribute
dependence graph

Back to the Examples

This is the complete
attribute dependence graph
for “–101”.

It shows the flow of all
attribute values in the
example.

Some flow downward
→ inherited attributes

Some flow upward
→ synthesized attributes

A rule may use attributes in
the parent, children, or
siblings of a node

Number

Sign

–

List

Bit

1

List

Bit

0

List

Bit

1

pos: 0
val: 1

pos: 2
val: 4

pos: 1
val: 0

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg:
true

For “–101”

The Rules of the Game

• Attributes associated with nodes in parse tree
• Rules are value assignments associated with productions
• Attribute is defined once, using local information
• Label identical terms in production for uniqueness
• Rules & parse tree define an attribute dependence graph

→ Graph must be non-circular

This produces a high-level, functional specification

Synthesized attribute
→ Depends on values from children

Inherited attribute
→ Depends on values from siblings & parent

Using Attribute Grammars

Attribute grammars can specify context-sensitive actions
• Take values from syntax
• Perform computations with values
• Insert tests, logic, …

We want to use both kinds of attribute

Synthesized Attributes

• Use values from children
 & from constants

• S-attributed grammars

• Evaluate in a single
 bottom-up pass

Good match to LR parsing

Inherited Attributes

• Use values from parent,
 constants, & siblings

• directly express context

• can rewrite to avoid them

• Thought to be more natural

Not easily done at parse time

Evaluation Methods

Dynamic, dependence-based methods
• Build the parse tree
• Build the dependence graph
• Topological sort the dependence graph
• Define attributes in topological order

Rule-based methods (treewalk)
• Analyze rules at compiler-generation time
• Determine a fixed (static) ordering
• Evaluate nodes in that order

Oblivious methods (passes, dataflow)
• Ignore rules & parse tree
• Pick a convenient order (at design time) & use it

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1 For “–101”

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos: 0
val:

val:

neg:

For “–101”

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg:
true

For “–101”

Inherited Attributes

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg:
true

For “–101”

Synthesized attributes

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg:
true

For “–101”

Synthesized attributes

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg:
true

For “–101”

& then peel away the parse tree ...

If we show the computation ...

Back to the Example

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg:
true

For “–101”

All that is left is the attribute
dependence graph.

This succinctly represents the flow
of values in the problem instance.

The dynamic methods sort this
graph to find independent values,
then work along graph edges.

The rule-based methods try to
discover “good” orders by
analyzing the rules.

The oblivious methods ignore the
structure of this graph.

The dependence graph must be acyclic

Circularity

We can only evaluate acyclic instances
• We can prove that some grammars can only generate instances

with acyclic dependence graphs
• Largest such class is “strongly non-circular” grammars (SNC)
• SNC grammars can be tested in polynomial time
• Failing the SNC test is not conclusive

Many evaluation methods discover circularity dynamically
⇒ Bad property for a compiler to have

SNC grammars were first defined by Kennedy & Warren

The Realist’s Alternative

Ad-hoc syntax-directed translation
• Associate a snippet of code with each production
• At each reduction, the corresponding snippet runs
• Allowing arbitrary code provides complete flexibility

→ Includes ability to do tasteless & bad things

To make this work
• Need names for attributes of each symbol on lhs & rhs

→ Typically, one attribute passed through parser + arbitrary code
(structures, globals, statics, …)

→ Yacc introduced $$, $1, $2, … $n, left to right

• Need an evaluation scheme
→ Fits nicely into LR(1) parsing algorithm

Reality

Most parsers are based on this ad-hoc style of context-
sensitive analysis

Advantages
• Addresses the shortcomings of the AG paradigm
• Efficient, flexible

Disadvantages
• Must write the code with little assistance
• Programmer deals directly with the details

Most parser generators support a yacc-like notation

Typical Uses

• Building a symbol table
→ Enter declaration information as processed
→ At end of declaration syntax, do some post processing
→ Use table to check errors as parsing progresses

• Simple error checking/type checking
→ Define before use → lookup on reference
→ Dimension, type, ... → check as encountered
→ Type conformability of expression → bottom-up walk
→ Procedure interfaces are harder

♦ Build a representation for parameter list & types
♦ Create list of sites to check
♦ Check offline, or handle the cases for arbitrary orderings

assumes table
is global

Is This Really “Ad-hoc” ?

Relationship between practice and attribute grammars

Similarities
• Both rules & actions associated with productions
• Application order determined by tools, not author
• (Somewhat) abstract names for symbols

Differences
• Actions applied as a unit; not true for AG rules
• Anything goes in ad-hoc actions; AG rules are functional
• AG rules are higher level than ad-hoc actions

Limitations

• Forced to evaluate in a given order: postorder
→ Left to right only
→ Bottom up only

• Implications
→ Declarations before uses
→ Context information cannot be passed down

♦ How do you know what rule you are called from within?
♦ Example: cannot pass bit position from right down

→ Could you use globals?
 In this case we could get the position from the left, which

is not much help (and it requires initialization)

Alternative Strategy
• Build Abstract Syntax Tree

→ Use tree walk routines
→ Use “visitor” design pattern to add functionality

TreeNodeVisitor

VisitAssignment(AssignmentNode)

VisitVariableRef(VariableRefNode)

TypeCheckVisitor

VisitAssignment(AssignmentNode)

VisitVariableRef(VariableRefNode)

AnalysisVisitor

VisitAssignment(AssignmentNode)

VisitVariableRef(VariableRefNode)

Summary: Strategies for Context-Sensitive Analysis

• Attribute Grammars
→ Pros: Formal, powerful, can deal with propagation strategies
→ Cons: Too many copy rules, no global tables, works on parse

tree

• Postorder Code Execution
→ Pros: Simple and functional, can be specified in grammar (Yacc)

but does not require parse tree
→ Cons: Rigid evaluation order, no context inheritance

• Generalized Tree Walk
→ Pros: Full power and generality, operates on abstract syntax

tree (using Visitor pattern)
→ Cons: Requires specific code for each tree node type, more

complicated

