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Parsing Techniques

Top-down parsers     (LL(1), recursive descent)

• Start at the root of the parse tree and grow toward leaves
• Pick a production & try to match the input
• Bad “pick” ⇒ may need to backtrack
• Some grammars are backtrack-free           (predictive parsing)

Bottom-up parsers     (LR(1), operator precedence)

• Start at the leaves and grow toward root
• As input is consumed, encode possibilities in an internal state
• Start in a state valid for legal first tokens
• Bottom-up parsers handle a large class of grammars



Bottom-up Parsing                                (definitions)

The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps
S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence

• Each γi is a sentential form 
→ If γ contains only terminal symbols, γ is a sentence in L(G) 
→ If γ contains ≥ 1 non-terminals, γ is a sentential form

• To get γi from γi–1, expand some NT A ∈ γi–1 by using A →β
→ Replace the occurrence of A ∈ γi–1 with β to get γi 
→ In a leftmost derivation, it would be the first NT A ∈ γi–1 

A left-sentential form occurs in a leftmost derivation
A right-sentential form occurs in a rightmost derivation



Bottom-up Parsing

A bottom-up parser builds a derivation by working from
the input sentence back toward the start symbol S 

S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence

To reduce γi  to γi–1 match some rhs β against γi then  replace β 
with its corresponding lhs, A.    (assuming the production A→β) 

In terms of the parse tree, this is working from leaves to root
• Nodes  with no parent in a partial tree form its upper fringe 
• Since each replacement of β with A shrinks the upper fringe, 
      we call it a reduction.

The parse tree need not be built, it can be simulated
|parse tree nodes|  =  |words| + |reductions|

bottom-up



Finding Reductions

Consider the simple grammar

And the input string abbcde

The trick is scanning the input and finding the next reduction
The mechanism for doing this must be efficient

1 Goal →
2 A →
3 | b
4 B → d

a A B e
A b c 

Sentential Next Reduction
Form Prod’n Pos’n

abbcde 3 2
2 4
4 3
1 4

Goal — —

a A bcde
a A de
a A B e



Finding Reductions                              (Handles)

The parser must find a substring β of the tree’s frontier that 
matches some production A → β that occurs as one step 
in the rightmost derivation                                (⇒ β → A is in RRD)

Informally, we call this substring β a handle

Formally,
A handle of a right-sentential form γ is a pair <A→β,k> where
A→β ∈ P and k is the position in γ of β’s rightmost symbol.
If <A→β,k> is a handle, then replacing β at k with A produces the 

right sentential form from which γ is derived in the rightmost 
derivation.

Because γ is a right-sentential form, the substring to the right 
of a handle contains only terminal symbols

⇒ the parser doesn’t need to scan past the handle       (very far)



Finding Reductions                              (Handles)

Critical Insight                                               (Theorem?)
If G is unambiguous, then every right-sentential form has a 
unique handle. 

If we can find those handles, we can build a derivation !

Sketch of Proof:
1 G is unambiguous ⇒ rightmost derivation is unique
2 ⇒ a unique production A → β applied to derive γi  from γi–1

3 ⇒ a unique position k at which A→β is applied
4 ⇒ a unique handle <A→β,k> 
This all follows from the definitions



Example                                   (a very busy slide)

The expression grammar Handles for rightmost derivation of  x – 2 * y 

This is the inverse of Figure 3.9  in EaC

1 Goal → Expr
2 Expr →
3 |
4 | Term
5 Term →
6 |
7 | Factor
8 Factor → number
9 | id
10 |

Expr  + Term
Expr  – Term

Term  * Factor
Term  / Factor

( Expr )

Prod’n. Sentential Form Handle
— Goal —
1 Expr 1,1
3 3,3
5 5,5
9 9,5
7 7,3
8 8,3
4 4,1
7 7,1
9 9,1

Expr – Term
Expr –Term * Factor
Expr – Term * <id,y>
Expr – Factor * <id,y>
Expr – <num,2> * <id,y>
Term – <num,2> * <id,y>
Factor – <num,2> * <id,y>
<id,x> – <num,2> * <id,y>



Handle-pruning, Bottom-up Parsers

The process of discovering a handle & reducing it to the 
appropriate left-hand side is called handle pruning 

Handle pruning forms the basis for a bottom-up parsing method

To construct a rightmost derivation
S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ w

Apply the following simple algorithm
for i ← n to 1 by –1
     Find the handle <Ai →βi , ki > in γi 
     Replace βi with Ai to generate γi–1 

This takes 2n steps



Handle-pruning, Bottom-up Parsers

One implementation technique is the shift-reduce parser

push INVALID
token ← next_token( )
repeat until (top of stack = Goal and token = EOF)
     if the top of the stack is a handle A→β 
          then      // reduce β to A
               pop |β| symbols off the stack
               push A onto the stack
          else if (token ≠ EOF)
               then // shift 
                     push token 
                     token ← next_token( )
           else     // need to shift, but out of input 

report an error   

Figure 3.7 in EAC

How do errors show up?

• failure to find a handle

• hitting EOF & needing to  
   shift (final else clause)

Either generates an error



Back to x - 2 * y

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce 

Stack Input Handle Action
$ none shiftid – num * id
$id –  num * id



Back to x - 2 * y

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce 

Stack Input Handle Action
$ none shift

9,1 red. 9
7,1 red. 7
4,1 red. 4

id – num * id
$id – num * id
$ Factor – num * id
$ Term – num * id
$ Expr  –  num * id



Back to x - 2 * y

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce 

Stack Input Handle Action
$ none shift

9,1 red. 9
7,1 red. 7
4,1 red. 4

none shift
none shift

id – num * id
$id – num * id
$ Factor – num * id
$ Term – num * id
$ Expr – num * id
$ Expr – num * id
$Expr – num * id



Back to x - 2 * y

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce 

Stack Input Handle Action
$ none shift

9,1 red. 9
7,1 red. 7
4,1 red. 4

none shift
none shift
8,3 red. 8
7,3 red. 7

id – num * id
$id – num * id
$ Factor – num * id
$ Term – num * id
$ Expr – num * id
$ Expr – num * id
$Expr – num * id
$ Expr – Factor * id
$Expr – Term * id



Back to x - 2 * y

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce 

Stack Input Handle Action
$ none shift

9,1 red. 9
7,1 red. 7
4,1 red. 4

none shift
none shift
8,3 red. 8
7,3 red. 7

none shift
id none shift

id – num * id
$id – num * id
$ Factor – num * id
$ Term – num * id
$ Expr – num * id
$ Expr – num * id
$Expr – num * id
$ Expr – Factor * id
$Expr – Term * id
$Expr – Term *  
$ Expr – Term * id



Back to x – 2 * y

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce 

5 shifts + 
9 reduces + 
1 accept

Stack Input Handle Action
$ none shift

9,1 red. 9
7,1 red. 7
4,1 red. 4

none shift
none shift
8,3 red. 8
7,3 red. 7

none shift
id none shift

9,5 red. 9
5,5 red. 5
3,3 red. 3
1,1 red. 1

none accept

id – num * id
$id – num * id
$ Factor – num * id
$ Term – num * id
$ Expr – num * id
$ Expr – num * id
$Expr – num * id
$ Expr – Factor * id
$Expr – Term * id
$Expr – Term *  
$ Expr – Term * id
$ Expr – Term * Factor
$ Expr – Term
$ Expr 
$ Goal



Example

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact.Term

Term

*

Stack Input Action
$ shift

red. 9
red. 7
red. 4
shift
shift

red. 8
red. 7
shift

id shift
red. 9
red. 5
red. 3
red. 1
accept

id – num * id
$id – num * id
$ Factor – num * id
$ Term – num * id
$ Expr – num * id
$ Expr – num * id
$Expr – num * id
$ Expr – Factor * id
$Expr – Term * id
$Expr – Term *  
$ Expr – Term * id
$ Expr – Term * Factor
$ Expr – Term
$ Expr 
$ Goal



Shift-reduce Parsing

Shift reduce parsers are easily built and easily understood

A shift-reduce parser has just four actions
• Shift — next word is shifted onto the stack
• Reduce — right end of handle is at top of stack

    Locate left end of handle within the stack
    Pop handle off stack & push appropriate lhs

• Accept — stop parsing & report success
• Error  — call an error reporting/recovery routine

Accept & Error are simple
Shift is just a push and a call to the scanner
Reduce takes |rhs| pops & 1 push
If handle-finding requires state, put it in the stack ⇒ 2x work

Handle finding is key
• handle is on stack
• finite set of handles
⇒  use a DFA !



An Important Lesson about Handles

To be a handle, a substring of a sentential form γ must have 
two properties:

→ It must match the right hand side β of some rule A → β 
→ There must be some rightmost derivation from the goal symbol 

that produces the sentential form γ with A → β as the last 
production applied

• Simply looking for right hand sides that match strings is not 
good enough

• Critical Question: How can we know when we have found a 
handle without generating lots of different derivations?

→ Answer: we use look ahead in the grammar along with tables 
produced as the result of analyzing the grammar. 

→ LR(1) parsers build a DFA that runs over the stack & finds them



LR(1) Parsers
• LR(1) parsers are table-driven, shift-reduce parsers that
     use a limited right context (1 token) for handle recognition
• LR(1) parsers recognize languages that have an LR(1) grammar

Informal definition:
A grammar is LR(1) if, given a rightmost derivation

S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence
We can 

1. isolate the handle of each right-sentential form γi, and 

2. determine the production by which to reduce,
by scanning γi from left-to-right, going at most 1 symbol beyond 
the right end of the handle of γi 



LR(1) Parsers

A table-driven LR(1) parser looks like

Tables can be built by hand
However, this is a perfect task to automate

Scanner Table-driven
Parser

ACTION & 
GOTO
Tables

Parser
Generator

source
code

grammar

IR



LR(1) Skeleton Parser
stack.push(INVALID); stack.push(s0); 
not_found = true;
token = scanner.next_token();
do while (not_found) {
   s = stack.top();
   if ( ACTION[s,token] == “reduce A→β” ) then {

stack.popnum(2*|β|); // pop 2*|β| symbols
         s = stack.top();
         stack.push(A); 
         stack.push(GOTO[s,A]);

}
   else if ( ACTION[s,token] == “shift si” ) then {

stack.push(token); stack.push(si);
token ← scanner.next_token();

}
   else if ( ACTION[s,token] == “accept”  

& token == EOF )
then not_found = false;

else report a syntax error and recover;
} 
report success;

The skeleton parser 

• uses ACTION & GOTO 
tables

• does |words| shifts

• does |derivation|    
   reductions 
• does 1 accept

• detects errors by failure 
of 3 other cases 



To make a parser for L(G), need a set of tables

The grammar 

The tables

LR(1) Parsers (parse tables)

Remember, this is 
the left-recursive 
SheepNoise; EaC 
shows the right-
recursive version.

1 Goal → SheepNoise 
2 SheepNoise →
3 | baa

SheepNoise baa

ACTION 
State EOF baa

0 — shift 2
1 accept shift 3
2 reduce 3 reduce 3

GOTO 
State SheepNoise

0 1
1 0
2 0
3 0



LR(1) Parsers

How does this LR(1) stuff work?
• Unambiguous grammar ⇒ unique rightmost derivation

• Keep upper fringe on a stack
→ All active handles include top of stack (TOS)
→ Shift inputs until TOS is right end of a handle

• Language of handles is regular (finite)
→ Build a handle-recognizing DFA
→ ACTION & GOTO  tables encode the DFA

• To match subterm, invoke subterm DFA
 & leave old DFA’s state on stack

• Final state in DFA ⇒ a reduce action
→ New state is GOTO[state at TOS (after pop), lhs]
→ For SN, this takes the DFA to s1

S0

S3

S2

S1

baa

baa

SN

Control DFA for SN

Reduce 
action

Reduce 
action



Building LR(1) Parsers

How do we generate the ACTION and GOTO tables?
• Use the grammar to build a model of the DFA

• Use the model to build ACTION & GOTO tables
• If construction succeeds, the grammar is LR(1)

The Big Picture
• Model the state of the parser
• Use two functions goto( s, X )  and closure( s )

→ goto() is analogous to move() in the subset construction
→ closure() adds information to round out a state 

• Build up the states and transition functions of the DFA

• Use this information to fill in the ACTION and GOTO tables

Terminal or 
non-terminal



What can go wrong?

What if set s contains [A→β•aγ,b] and [B→β•,a] ?
• First item generates “shift”, second generates “reduce” 
• Both define ACTION[s,a] — cannot do both actions
• This is a fundamental ambiguity, called a shift/reduce error
• Modify the grammar to eliminate it                    (if-then-else)

• Shifting will often resolve it correctly 

What is set s contains [A→γ•, a] and [B→γ•, a] ?
• Each generates “reduce”, but with a different production
• Both define ACTION[s,a] — cannot do both reductions
• This fundamental ambiguity is called a reduce/reduce error
• Modify the grammar to eliminate it    (PL/I’s overloading of (...))

In  either case, the grammar is not LR(1)

EaC includes a 
worked example



Left Recursion versus Right Recursion

• Right recursion
• Required for termination in top-down parsers
• Uses (on average) more stack space
• Produces right-associative operators
• Left recursion
• Works fine in bottom-up parsers
• Limits required stack space
• Produces left-associative operators 

• Rule of thumb
• Left recursion for bottom-up parsers
• Right recursion for top-down parsers

*
*

*w
x

y
z

w * ( x * ( y * z ) )

*
*

* z

w
x

y

( (w * x ) *  y ) * z



Associativity

• What difference does it make?
• Can change answers in floating-point arithmetic
• Exposes a different set of common subexpressions

• Consider x+y+z

• What if y+z occurs elsewhere? Or x+y? or x+z?
• What if x = 2 & z = 17 ?  Neither left nor right exposes 19.
• Best choice is function of surrounding context 

+
+x

y z x y
z

+
++

x y z

Ideal 
operator

Left 
association

Right 
association



Hierarchy of Context-Free Languages

Context-free languages

Deterministic languages  (LR(k))

LL(k) languages Simple precedence
languages

LL(1) languages Operator precedence
languages

LR(k) ≡ LR(1)

The inclusion hierarchy for 
context-free languages



Hierarchy of Context-Free Grammars

The inclusion hierarchy for
context-free grammars

•  Operator precedence 
  includes some ambiguous  
  grammars

•  LL(1) is a subset of SLR(1)

Context-free grammars

Unambiguous
CFGs

Operator
Precedence 

Floyd-Evans
Parsable 

LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

LL(k)

LL(1)



Shrinking the Tables

Three options:
• Combine terminals such as number & identifier, + & -, * & /

→ Directly removes a column, may remove a row
→ For expression grammar, 198 (vs. 384) table entries  

• Combine rows or columns
→ Implement identical rows once & remap states
→ Requires extra indirection on each lookup
→ Use separate mapping for ACTION & for GOTO

• Use another construction algorithm
→ Both LALR(1) and SLR(1) produce smaller tables
→ Implementations are readily available



LR(k) versus LL(k)       (Top-down Recursive Descent )

Finding Reductions
LR(k) ⇒ Each reduction in the parse is detectable with 

1 the complete left context,
2 the reducible phrase, itself, and
3 the k terminal symbols to its right

LL(k) ⇒ Parser must select the reduction based on
1 The complete left context
2 The next k terminals

Thus, LR(k) examines more context 

“… in practice, programming languages do not actually seem to 
fall in the gap between LL(1) languages and deterministic 
languages”       J.J. Horning, “LR Grammars and Analysers”, in 
Compiler Construction, An Advanced Course, Springer-Verlag, 1976 



Summary

Advantages
Fast
Good locality
Simplicity
Good error                    

detection

Fast 
Deterministic langs.
Automatable
Left associativity

Disadvantages
Hand-coded
High maintenance
Right associativity

Large working sets
Poor error messages
Large table sizes

Top-down
recursive
descent

LR(1)



Beyond Syntax

There is a level of correctness that is deeper than grammar
fie(a,b,c,d)

int a, b, c, d;
{ … }

fee() {
int f[3],g[0],

h, i, j, k;
  char *p;

fie(h,i,“ab”,j, k); 
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,

p,q);
p = 10;

}

What is wrong with this program?
(let me count the ways …)



Beyond Syntax

There is a level of correctness that is deeper than grammar
fie(a,b,c,d)

int a, b, c, d;
{ … }

fee() {
int f[3],g[0],

h, i, j, k;
  char *p;

fie(h,i,“ab”,j, k); 
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,

p,q);
p = 10;

}

What is wrong with this program?
(let me count the ways …)

• declared g[0], used g[17]

• wrong number of args to fie()

• “ab” is not an int

• wrong dimension on use of f

• undeclared variable q

• 10 is not a character string

All of these are  “deeper than 
syntax”

To generate code, we need to understand its meaning !



Beyond Syntax

To generate code, the compiler needs to answer many questions 
• Is “x” a scalar, an array, or a function?  Is “x” declared?
• Are there names that are not declared?  Declared but not used?
• Which declaration of “x” does each use reference?
• Is the expression “x * y + z” type-consistent?
• In “a[i,j,k]”, does a have three dimensions?
• Where can “z” be stored?         (register, local, global, heap, static)
• In “f ← 15”, how should 15 be represented?
• How many arguments does “fie()” take?  What about “printf ()” ?
• Does “*p” reference the result of a “malloc()” ?  
• Do “p” & “q” refer to the same memory location?
• Is “x” defined before it is used?

These cannot be expressed in a CFG



Beyond Syntax

These questions are part of context-sensitive analysis
• Answers depend on values, not parts of speech
• Questions & answers involve non-local information
• Answers may involve computation

How can we answer these questions?
• Use formal methods

→ Context-sensitive grammars?
→ Attribute grammars?                             (attributed grammars?)

• Use ad-hoc techniques
→ Symbol tables
→ Ad-hoc code                                                      (action routines)

In scanning & parsing, formalism won; different story here.


