Parsing IV Bottom-up Parsing

Copyright 2003, Keith D. Cooper, Ken Kennedy \& Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

- Start at the root of the parse tree and grow toward leaves
- Pick a production \& try to match the input
- Bad "pick" \Rightarrow may need to backtrack
- Some grammars are backtrack-free

Bottom-up parsers (LR(1), operator precedence)

- Start at the leaves and grow toward root
- As input is consumed, encode possibilities in an internal state
- Start in a state valid for legal first tokens
- Bottom-up parsers handle a large class of grammars

The point of parsing is to construct a derivation
A derivation consists of a series of rewrite steps

$$
S \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow \text { sentence }
$$

- Each γ_{i} is a sentential form
\rightarrow If γ contains only terminal symbols, γ is a sentence in $L(G)$
\rightarrow If γ contains ≥ 1 non-terminals, γ is a sentential form
- To get γ_{i} from γ_{i-1}, expand some NT $A \in \gamma_{i-1}$ by using $A \rightarrow \beta$
\rightarrow Replace the occurrence of $A \in \gamma_{i-1}$ with β to get γ_{i}
\rightarrow In a leftmost derivation, it would be the first NT $A \in \gamma_{i-1}$
A left-sentential form occurs in a leftmost derivation
A right-sentential form occurs in a rightmost derivation

Bottom-up Parsing

A bottom-up parser builds a derivation by working from the input sentence back toward the start symbol S

$$
\stackrel{S}{\stackrel{L}{2}} \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow \text { sentence } \text { bottom-up }
$$

To reduce γ_{i} to γ_{i-1} match some rhs β against γ_{i} then replace β with its corresponding Ihs, A. (assuming the production $A \rightarrow \beta$)

In terms of the parse tree, this is working from leaves to root

- Nodes with no parent in a partial tree form its upper fringe
- Since each replacement of β with A shrinks the upper fringe, we call it a reduction.

The parse tree need not be built, it can be simulated

$$
\mid \text { parse tree nodes }|=| \text { words }|+| \text { reductions } \mid
$$

Finding Reductions

Consider the simple grammar

1	Goal	$\rightarrow \underline{a} A B \underline{e}$
2	A	$\rightarrow A \underline{b} \underline{c}$
3		$\mid \underline{b}$
4	B	$\rightarrow \underline{d}$

And the input string abbcde

Sentential	Next Reduction	
Form	Prod'n	Pos'n
$\underline{\text { abbcde }}$	3	2
$\underline{a} A \underline{\text { bcde }}$	2	4
$\underline{a} A \underline{d e}$	4	3
$\underline{a} A$ Be	1	4
Goal	-	-

The trick is scanning the input and finding the next reduction The mechanism for doing this must be efficient

The parser must find a substring β of the tree's frontier that matches some production $A \rightarrow \beta$ that occurs as one step in the rightmost derivation
Informally, we call this substring β a handle
Formally,
A handle of a right-sentential form γ is a pair $\langle A \rightarrow \beta, k\rangle$ where $A \rightarrow \beta \in P$ and k is the position in γ of β 's rightmost symbol.
If $\langle A \rightarrow \beta, k\rangle$ is a handle, then replacing β at k with A produces the right sentential form from which γ is derived in the rightmost derivation.
Because γ is a right-sentential form, the substring to the right of a handle contains only terminal symbols
\Rightarrow the parser doesn't need to scan past the handle

Critical Insight
If G is unambiguous, then every right-sentential form has a unique handle.
If we can find those handles, we can build a derivation!
Sketch of Proof:
$1 G$ is unambiguous \Rightarrow rightmost derivation is unique
$2 \Rightarrow$ a unique production $A \rightarrow \beta$ applied to derive γ_{i} from γ_{i-1}
$3 \Rightarrow$ a unique position k at which $A \rightarrow \beta$ is applied
$4 \Rightarrow$ a unique handle $\langle A \rightarrow \beta, k>$
This all follows from the definitions

Example

				Prod'n	Sentential Form	Handle
1	Goal	\rightarrow	Expr	-	Goal	-
2	Expr	\rightarrow	Expr + Term	1	Expr	1,1
3		1	Expr - Term	3	Expr-Term	3,3
4		1	Term	5	Expr-Term * Factor	5,5
5	Term	\rightarrow	Term * Factor	9	Expr - Term* <id, y>	9,5
6		\|	Term / Factor	7	Expr - Factor * <id, $\mathrm{y}^{\text {¢ }}$	7,3
7		1	Factor	8		8,3
8	Factor	\rightarrow	number	4		4,1
9		1	id	7		7,1
10		\|	(Expr)	9	$\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle^{*}\langle i d, y\rangle$	9,1

The expression grammar
Handles for rightmost derivation of $\underline{x}=\underline{2} \underset{\sim}{*} \underset{y}{x}$

Handle-pruning, Bottom-up Parsers

The process of discovering a handle \& reducing it to the appropriate left-hand side is called handle pruning

Handle pruning forms the basis for a bottom-up parsing method
To construct a rightmost derivation

$$
S \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow w
$$

Apply the following simple algorithm
for $i \leftarrow n$ to 1 by -1
Find the handle $<A_{i} \rightarrow \beta_{i}, \boldsymbol{k}_{\mathrm{i}}>$ in γ_{i}
Replace β_{i} with A_{i} to generate γ_{i-1}
This takes $2 n$ steps

Handle-pruning, Bottom-up Parsers

One implementation technique is the shift-reduce parser

Figure 3.7 in EAC

Back to $\underline{x}=\underline{2}$ * \boldsymbol{y}

Stack	Input	Handle	Action
$\begin{aligned} & \hline \$ \\ & \text { sid } \end{aligned}$	$\begin{aligned} \underline{\text { id }} & =\text { num }^{*}-\underline{\text { id }} \\ & =\text { num }_{-}^{*} \text { id } \end{aligned}$	none	shift

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle \& reduce

Back to $\underline{x}=\underline{2}$ * \boldsymbol{x}

Stack	Input	Handle	Action
\$	$\underline{\text { id }}=$ num ${ }^{*}$ id	none	
\$id	$=\underline{\text { num }}^{*}$ id	9,1	red. 9
\$ Factor	- num * id	7,1	red. 7
\$ Term	num ${ }^{*}$ id	4,1	red. 4
\$ Expr	- num * id		

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle \& reduce

Back to $\underline{x}=\underline{2}$ * -7

Stack	Input	Handle	Action
\$	$\underline{\text { id }}=$ num ${ }^{*}$ id	none	shift
\$id	$=$ num * id	9,1	red. 9
\$ Factor	$=$ num * id	7,1	red. 7
\$ Term	$=$ num * id	4,1	red. 4
\$ Expr	$=$ num * id	none	shift
\$ Expr $=$	num * ${ }^{*}$ id	none	shift
\$Expr $=$ num	* ${ }^{\text {id }}$		

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle \& reduce

Back to $\underline{x}=\underline{2}$ * y

Stack	Input	Handle	Action
\$	$\underline{\text { id }}=$ num * id	none	shift
sid	$=$ num ${ }^{*}$ id	9,1	red. 9
\$ Factor	$=$ num ${ }^{*}$ id	7,1	red. 7
\$ Term	$=$ num * id	4,1	red. 4
\$Expr	$=$ num ${ }^{*}$ id	none	shift
\$Expr=	num ${ }^{*}$ id	none	shift
\$Expr-num	* id	8,3	red. 8
\$Expr = Factor	* id	7,3	red. 7
sExpr $=$ Term	${ }_{-}^{*}$ id		

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle \& reduce

Back to $\underline{x}=2$ ※ \quad.

Stack	Input	Handle	Action
\$	$\underline{\text { id }}=\underline{\text { num }}{ }_{-}^{\text {* id }}$	none	shift
\$id	$=$ num * id	9,1	red. 9
\$ Factor	$=$ num * id	7,1	red. 7
\$ Term	$=$ num * id	4,1	red. 4
\$ Expr	$=\underline{\text { num }}$ * id	none	shift
\$ Expr=	num * id	none	shift
\$Expr_ num	* id	8,3	red. 8
\$ Expr = Factor	* id	7,3	red. 7
\$Expr $=$ Term	* id	none	shift
\$Expr $=$ Term*	id	none	shift
\$ Expr $=$ Term * id			

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle \& reduce

Back to $\underline{x}=\underline{2}$ * \boldsymbol{y}

Stack	Input	Handle	Action	\pm
\$	$\underline{\text { id }}=$ num * id d	none	shift	
sid	$=$ num ${ }^{*}$ id	9,1	red. 9	
\$ Factor	$=$ num ${ }^{*}$ id	7,1	red. 7	
\$ Term	$=$ num * id	4,1	red. 4	
\$Expr	$=$ num * id	none	shift	
\$Expr=	num * id	none	shift	
sExpr-num	* id	8,3	red. 8	
sExpr_Factor	* id	7,3	red. 7	
sExpr $=$ Term	* id	none	shift	
sExpr $=$ Term*	id	none	shift	
\$ Expr $=$ Term ${ }_{-}^{*}$ id		9,5	red. 9	
\$ Expr $=$ Term ${ }_{-}^{*}$ Factor		5,5	red. 5	5 shifts +
\$Expr $=$ Term		3,3	red. 3	9 reduces +
\$ Expr		1,1	red. 1	1 accept
\$ Goal		none	accept	

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle \& reduce

Example

Shift-reduce Parsing

Shift reduce parsers are easily built and easily understood
A shift-reduce parser has just four actions

- Shift - next word is shifted onto the stack
- Reduce - right end of handle is at top of stack

Locate left end of handle within the stack
Pop handle off stack \& push appropriate Ihs

- Accept - stop parsing \& report success
- Error - call an error reporting/recovery routine Accept \& Error are simple Shift is just a push and a call to the scanner Reduce takes |rhs| pops \& 1 push

Handle finding is key

- handle is on stack
- finite set of handles
\Rightarrow use a DFA!

If handle-finding requires state, put it in the stack $\Rightarrow 2 x$ work

An Important Lesson about Handles

To be a handle, a substring of a sentential form γ must have two properties:
\rightarrow It must match the right hand side β of some rule $A \rightarrow \beta$
\rightarrow There must be some rightmost derivation from the goal symbol that produces the sentential form γ with $A \rightarrow \beta$ as the last production applied

- Simply looking for right hand sides that match strings is not good enough
- Critical Question: How can we know when we have found a handle without generating lots of different derivations?
\rightarrow Answer: we use look ahead in the grammar along with tables produced as the result of analyzing the grammar.
$\rightarrow L R(1)$ parsers build a DFA that runs over the stack \& finds them

LR(1) Parsers

- LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for handle recognition
- LR(1) parsers recognize languages that have an LR(1) grammar

Informal definition:
A grammar is $\operatorname{LR}(1)$ if, given a rightmost derivation

$$
S \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow \text { sentence }
$$

We can

1. isolate the handle of each right-sentential form $\gamma_{i,}$ and
2. determine the production by which to reduce,
by scanning γ_{i} from left-to-right, going at most 1 symbol beyond the right end of the handle of γ_{i}

LR(1) Parsers

A table-driven LR(1) parser looks like

Tables can be built by hand
However, this is a perfect task to automate

LR(1) Skeleton Parser

```
stack.push(INVALID); stack.push(so);
not_found = true;
token = scanner.next_token();
do while (not_found) {
    s = stack.top();
    if ( ACTION[s,token] == "reduce A->\beta" ) then {
    stack.popnum(2* }|\beta|); // pop 2*| \beta| symbols
    s = stack.top();
    stack.push(A);
    stack.push(GOTO[s,A]);
    }
    else if ( ACTION[s,token] == "shift s"") then {
    stack.push(token); stack.push(s);
    token \leftarrow scanner.next_token();
    }
    else if ( ACTION[s,token] == "accept"
        & token == EOF )
    then not_found = false;
    else report a syntax error and recover;
}
report success;
```

The skeleton parser

- uses ACTION \& GOTO tables
- does |words| shifts
- does |derivation| reductions
- does 1 accept
- detects errors by failure of 3 other cases

LR(1) Parsers (parse tables)

To make a parser for $L(G)$, need a set of tables
The grammar

1	Goal	\rightarrow	SheepNoise
2	SheepNoise	\rightarrow	SheepNoise baa
3		$\underline{1}$	$\underline{\text { baa }}$

Remember, this is the left-recursive SheepNoise: EaC shows the rightrecursive version.

The tables

ACTION		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 3

GOTO	
State	SheepNoise
0	1
1	0
2	0
3	0

LR(1) Parsers

How does this LR(1) stuff work?

- Unambiguous grammar \Rightarrow unique rightmost derivation
- Keep upper fringe on a stack
\rightarrow All active handles include top of stack (TOS)
\rightarrow Shift inputs until TOS is right end of a handle
- Language of handles is regular (finite)
\rightarrow Build a handle-recognizing DFA
\rightarrow ACTION \& GOTO tables encode the DFA
- To match subterm, invoke subterm DFA \& leave old DFA's state on stack
- Final state in DFA \Rightarrow a reduce action
\rightarrow New state is GOTO[state at TOS (after pop), Ihs]

Control DFA for SN

Building LR(1) Parsers

How do we generate the ACTION and GOTO tables?

- Use the grammar to build a model of the DFA
- Use the model to build ACTION \& GOTO tables
- If construction succeeds, the grammar is LR(1)

The Big Picture

- Model the state of the parser
- Use two functions goto(s, X) and closure(s)
\rightarrow goto() is analogous to move() in the subset construction
\rightarrow closure() adds information to round out a state
- Build up the states and transition functions of the DFA
- Use this information to fill in the ACTION and GOTO tables

What can go wrong?

What if set s contains $[A \rightarrow \beta \cdot \underline{\alpha}, \underline{b}]$ and $[B \rightarrow \beta \cdot, \underline{a}]$?

- First item generates "shift", second generates "reduce"
- Both define ACTION[s,a] - cannot do both actions
- This is a fundamental ambiguity, called a shift/reduce error
- Modify the grammar to eliminate it (if-then-else)
- Shifting will often resolve it correctly

What is set s contains $\left[A \rightarrow \gamma^{\cdot}, \underline{q}\right]$ and $\left[B \rightarrow \gamma^{\cdot}, \underline{a}\right.$?

EaC includes a worked example

- Each generates "reduce", but with a different production
- Both define ACTION[s,a] - cannot do both reductions
- This fundamental ambiguity is called a reduce/reduce error
- Modify the grammar to eliminate it (PL/I's overloading of (...))

$$
\text { In either case, the grammar is not } \angle R(1)
$$

Left Recursion versus Right Recursion

- Right recursion
- Required for termination in top-down parsers
- Uses (on average) more stack space
- Produces right-associative operators
- Left recursion
- Works fine in bottom-up parsers
- Limits required stack space
- Produces left-associative operators
- Rule of thumb
 $w^{*}\left(x^{*}(y * z)\right)$

- Left recursion for bottom-up parsers

$$
\left(\left(w^{*} x\right)^{*} y\right)^{*} z
$$

- Right recursion for top-down parsers

Associativity

- What difference does it make?
- Can change answers in floating-point arithmetic
- Exposes a different set of common subexpressions
- Consider $x+y+z$

Ideal
operator

Left
association

Right association

- What if $y+z$ occurs elsewhere? Or $x+y$? or $x+z$?
- What if $x=2 \& z=17$? Neither left nor right exposes 19 .
- Best choice is function of surrounding contex \dagger

Hierarchy of Context-Free Languages

Context-free languages

The inclusion hierarchy for context-free languages

Hierarchy of Context-Free Grammars

The inclusion hierarchy for context-free grammars

Shrinking the Tables

Three options:

- Combine terminals such as number \& identifier, \pm \&,$\stackrel{\star}{-}$ \& $/ \underline{I}$
\rightarrow Directly removes a column, may remove a row
\rightarrow For expression grammar, 198 (vs. 384) table entries
- Combine rows or columns
\rightarrow Implement identical rows once \& remap states
\rightarrow Requires extra indirection on each lookup
\rightarrow Use separate mapping for ACTION \& for GOTO
- Use another construction algorithm
\rightarrow Both LALR(1) and SLR(1) produce smaller tables
\rightarrow Implementations are readily available

$L R(k)$ versus $L L(k)$ (Top-down Recursive Descent)

Finding Reductions
$L R(k) \Rightarrow$ Each reduction in the parse is detectable with
1 the complete left context,
2 the reducible phrase, itself, and
3 the k terminal symbols to its right
$L L(k) \Rightarrow$ Parser must select the reduction based on
1 The complete left context
2 The next k terminals
Thus, $\operatorname{LR}(k)$ examines more contex \dagger
"... in practice, programming languages do not actually seem to fall in the gap between LL(1) languages and deterministic languages" J.J. Horning, "LR Grammars and Analysers", in Compiler Construction, An Advanced Course, Springer-Verlag, 1976

Summary

	Advantages	Disadvantages
Top-down recursive descent	Fast Good locality Simplicity Good error detection	Hand-coded High maintenance Right associativity
LR(1) Fast Deterministic langs. Automatable Left associativity Poor error messages Large table sizes \quadLarge working sets		

Beyond Syntax

There is a level of correctness that is deeper than grammar

```
fie(a,b,c,d)
    int a,b,c,d;
```

What is wrong with this program? (let me count the ways ...)

To generate code, we need to understand its meaning!

There is a level of correctness that is deeper than grammar

```
fie(a,b,c,d)
    int a,b,c,d;
{...}
fee() {
    int f[3],g[0],
        h, i,j,k;
    char *p;
    fie(h,i,"ab",j, k);
    k=f*i+j;
    h = g[17];
    printf("<%s,%s>.\n",
        p,q);
    p = 10;
```

 What is wrong with this program?
 (let me count the ways ...)
 - declared g[0], used g[17]
- wrong number of args to fie()
- "ab" is not an int
- wrong dimension on use of f
- undeclared variable q
- 10 is not a character string

All of these are "deeper than syntax"

Beyond Syntax

To generate code, the compiler needs to answer many questions

- Is " x " a scalar, an array, or a function? Is " x " declared?
- Are there names that are not declared? Declared but not used?
- Which declaration of " x " does each use reference?
- Is the expression " $x^{*} y+z$ " type-consistent?
- In " $a[i, j, k]$ ", does a have three dimensions?
- Where can "z" be stored?
(register, local, global, heap, static)
- In " $f \leftarrow 15$ ", how should 15 be represented?
- How many arguments does "fie()" take? What about "printf ()"?
- Does "*p" reference the result of a "malloc()" ?
- Do " p " \& " q " refer to the same memory location?
- Is " x " defined before it is used?

Beyond Syntax

These questions are part of context-sensitive analysis

- Answers depend on values, not parts of speech
- Questions \& answers involve non-local information
- Answers may involve computation

How can we answer these questions?

- Use formal methods
\rightarrow Context-sensitive grammars?
\rightarrow Attribute grammars?
(attributed grammars?)
- Use ad-hoc techniques
\rightarrow Symbol tables
\rightarrow Ad-hoc code
In scanning \& parsing, formalism won; different story here.

