Parsing III
 (Top-down parsing: recursive descent \& $L L(1)$)

Copyright 2003, Keith D. Cooper, Ken Kennedy \& Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Roadmap (Where are we?)

We set out to study parsing

- Specifying syntax
\rightarrow Context-free grammars $\sqrt{ }$
\rightarrow Ambiguity $\sqrt{ }$
- Top-down parsers
\rightarrow Algorithm \& its problem with left recursion $\sqrt{ }$
\rightarrow Left-recursion removal $\sqrt{ }$
- Predictive top-down parsing
\rightarrow The LL(1) condition today
\rightarrow Simple recursive descent parsers today
\rightarrow Table-driven LL(1) parsers today

Picking the "Right" Production

If it picks the wrong production, a top-down parser may backtrack
Alternative is to look ahead in input \& use context to pick correctly

How much lookahead is needed?

- In general, an arbitrarily large amount
- Use the Cocke-Younger, Kasami algorithm or Earley's algorithm

Fortunately,

- Large subclasses of CFGs can be parsed with limited lookahead
- Most programming language constructs fall in those subclasses

Among the interesting subclasses are $L L(1)$ and $L R(1)$ grammars

Predictive Parsing

Basic idea

Given $A \rightarrow \alpha \mid \beta$, the parser should be able to choose between $\alpha \& \beta$
First sets
For some rhs $\alpha \in G$, define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α
That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \not{ }^{*} \underline{x} \gamma$, for some γ

We will defer the problem of how to compute FIRST sets until we look at the $L R(1)$ table construction algorithm

Predictive Parsing

Basic idea

Given $A \rightarrow \alpha \mid \beta$, the parser should be able to choose between $\alpha \& \beta$
First sets
For some rhs $\alpha \in G$, define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α
That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \not{ }^{*} \underline{x} \gamma$, for some γ

The LL(1) Property
If $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like

$$
\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\varnothing
$$

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

> This is almost correct See the next slide

Predictive Parsing

What about ε-productions?
\Rightarrow They complicate the definition of $L L(1)$
If $A \rightarrow \alpha$ and $A \rightarrow \beta$ and $\varepsilon \in \operatorname{FIRST}(\alpha)$, then we need to ensure that $\operatorname{FIRST}(\beta)$ is disjoint from FOLLOW (α), too

Define $\operatorname{FIRST}^{+}(\alpha)$ as

- $\operatorname{FIRST}(\alpha) \cup \operatorname{FOLLOW}(\alpha)$, if $\varepsilon \in \operatorname{FIRST}(\alpha)$
- First (α), otherwise

Then, a grammar is LL(1) iff $A \rightarrow \alpha$ and $A \rightarrow \beta$ implies

$$
\operatorname{FIRST}^{+}(\alpha) \cap \operatorname{FIRST}^{+}(\beta)=\varnothing
$$

FOLLOW (α) is the set of all words in the grammar that can legally appear immediately after an α

Predictive Parsing

Given a grammar that has the LL(1) property

- Can write a simple routine to recognize each Ihs
- Code is both simple \& fast Consider $A \rightarrow \beta_{1}\left|\beta_{2}\right| \beta_{3}$, with

$$
\operatorname{FIRST}^{+}\left(\beta_{1}\right) \cap \operatorname{FIRST}^{+}\left(\beta_{2}\right) \cap \operatorname{FIRST}^{+}\left(\beta_{3}\right)=\varnothing
$$

```
/* find an A*/
if (current_word \in FIRST ( }\mp@subsup{\beta}{1}{})\mathrm{ )
    find a }\mp@subsup{\beta}{1}{}\mathrm{ and return true
else if (current_word \in FIRST( }\mp@subsup{\beta}{2}{})\mathrm{ )
    find a }\mp@subsup{\beta}{2}{}\mathrm{ and return true
else if (current_word \in FIRST( }\mp@subsup{\beta}{3}{})\mathrm{ )
    find a }\mp@subsup{\beta}{3}{}\mathrm{ and return true
else
    report an error and return false
```

Of course, there is more detail to
"find a β_{i} "
(§ 3.3.4 in EAC)

Recursive Descent Parsing

Recall the expression grammar, after transformation

1	Goal	\rightarrow	Expr
2	Expr	\rightarrow	Term Expr
3	Expr	\rightarrow	+ Term Expr
4		\mid	- Term Expr
5		\mid	ε
6	Term	\rightarrow	Factor Term
7	Term	\rightarrow	* Factor Term
8		\mid	$/$ Factor Term
9		\mid	ε
10	Factor	\vec{n}	$\underline{\text { number }}$
11		\mid	$\underline{\text { id }}$

This produces a parser with six mutually recursive routines:

- Goal
- Expr
- EPrime
- Term
- TPrime
- Factor

Each recognizes one NT or T
The term descent refers to the direction in which the parse tree is built.

Recursive Descent Parsing

(Procedural)

A couple of routines from the expression parser

Recursive Descent Parsing

To build a parse tree:

- Augment parsing routines to build nodes
- Pass nodes between routines using a stack
- Node for each symbol on rhs
- Action is to pop rhs nodes, make them children of lhs node, and push this subtree

To build an abstract syntax tree

- Build fewer nodes
- Put them together in a different order

```
Success }=>\mathrm{ build a piece of the parse tree
```

This is a preview of Chapter 4

Left Factoring

What if my grammar does not have the $\operatorname{LL}(1)$ property?
\Rightarrow Sometimes, we can transform the grammar
The Algorithm

```
\forallA\inNT,
    find the longest prefix a that occurs in two
        or more right-hand sides of A
    if \alpha\not=\varepsilon then replace all of the A productions,
        A->\alpha\mp@subsup{\beta}{1}{}|\alpha\mp@subsup{\beta}{2}{}|...|\alpha\mp@subsup{\beta}{n}{}|\gamma,
    with
        A->\alphaZ|\gamma
        Z->\beta}\mp@subsup{\beta}{1}{}|\mp@subsup{\beta}{2}{}|\ldots||\mp@code{n
    where }Z\mathrm{ is a new element of NT
Repeat until no common prefixes remain
```


Left Factoring

A graphical explanation for the same idea

$$
\begin{aligned}
& A \rightarrow \alpha \beta_{1} \\
& \mid \alpha \beta_{2} \\
& \mid \alpha \beta 3
\end{aligned} \quad \begin{gathered}
\text { becomes ... }
\end{gathered}
$$

$$
\begin{gathered}
A \rightarrow \alpha Z \\
Z \rightarrow \beta_{1} \\
\mid \beta_{2} \\
\mid \beta_{n}
\end{gathered}
$$

Left Factoring

Consider the following fragment of the expression grammar


```
FIRST}(rh\mp@subsup{s}{1}{})={\underline{Identifier }
FIRST}(rh\mp@subsup{s}{2}{})={\mathrm{ Identifier }
FIRST}(rh\mp@subsup{s}{3}{})={\mathrm{ Identifier }
```

After left factoring, it becomes

Factor	\rightarrow	IdentifierArguments
Argumen	\rightarrow	$[$ ExprList]
	\mid	$($ ExprList]
	\mid	ε

```
\(\operatorname{FIRST}\left(r h s_{1}\right)=\{\) Identifier \(\}\)
\(\operatorname{FIRST}\left(r h s_{2}\right)=\{[ \}\)
\(\operatorname{FIRST}\left(r h s_{3}\right)=\{f\}\)
\(\operatorname{FIRST}\left(r h s_{4}\right)=\operatorname{FOLLOW}(\) Factor \()\)
\(\Rightarrow\) It has the \(L L(1)\) property
```

This form has the same syntax, with the $\operatorname{LL}(1)$ property

Left Factoring

Graphically

Left Factoring

(Generality)

Question

By eliminating left recursion and left factoring, can we transform an arbitrary CFG to a form where it meets the $L L(1)$ condition? (and can be parsed predictively with a single token lookahead?)

Answer

Given a CFG that doesn't meet the $L L(1)$ condition, it is undecidable whether or not an equivalent $L L(1)$ grammar exists.

Example

$$
\left\{a^{n} 0 b^{n} \mid n \geq 1\right\} \cup\left\{a^{n} 1 b^{2 n} \mid n \geq 1\right\} \text { has no } L L(1) \text { grammar }
$$

Language that Cannot Be LL(1)

Example

$$
\left\{a^{n} 0 b^{n} \mid n \geq 1\right\} \cup\left\{a^{n} 1 b^{2 n} \mid n \geq 1\right\} \text { has no } L L(1) \text { grammar }
$$

$$
\begin{aligned}
& G \rightarrow \underline{a} A \underline{b} \\
& \mid \underline{a} B \underline{b} \\
& A \rightarrow \underline{a} A \underline{b} \\
& \mid \underline{0} \\
& B \rightarrow \underline{a} B \underline{b b} \\
& \underline{1}
\end{aligned}
$$

Problem: need an unbounded number of \underline{a} characters before you can determine whether you are in the A group or the B group.

Recursive Descent (Summary)

1. Build FIRst (and Follow) sets
2. Massage grammar to have LL(1) condition
a. Remove left recursion
b. Left factor it
3. Define a procedure for each non-terminal
a. Implement a case for each right-hand side
b. Call procedures as needed for non-terminals
4. Add extra code, as needed
a. Perform context-sensitive checking
b. Build an IR to record the code

Can we automate this process?

First and Follow Sets

FIRst(α)
For some $\alpha \in T \cup N T$, define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α

That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow{ }^{*} \underline{x} \gamma$, for some γ

FOLLOW(α)
For some $\alpha \in N T$, define FOLLOW (α) as the set of symbols that can occur immediately after α in a valid sentence.
Follow $(S)=\{E O F\}$, where S is the start symbol
To build FIRST sets, we need Follow sets ...

Computing Follow Sets

```
FOLLOW(S) \leftarrow{EOF}
for each A \inNT, FOLLOW(A)\leftarrow\varnothing
while (FOLLOW sets are still changing)
    for each p \inP, of the form A->\mp@subsup{\beta}{1}{}\mp@subsup{\beta}{2}{}\ldots..\mp@subsup{\beta}{k}{}
        FOLLOW ( }\mp@subsup{\beta}{k}{})\leftarrowFOLLOW(\mp@subsup{\beta}{k}{})\cupFOLLOW(A
        TRAILER \leftarrowFOLLOW(A)
        for i}\leftarrowk\mathrm{ down to 2
    if }\varepsilon\in\operatorname{FIRST}(\mp@subsup{\beta}{i}{})\mathrm{ then
        FOLLOW (\beta}\mp@subsup{\beta}{i-1}{})\leftarrow\operatorname{FOLLOW}(\mp@subsup{\beta}{i-1}{})\cup{\operatorname{FIRST}(\mp@subsup{\beta}{i}{})-{\varepsilon}
            ~TRAILER
        else
            FOLLOW (\beta}\mp@subsup{i}{i-1}{})\leftarrow\operatorname{FOLLOW}(\mp@subsup{\beta}{i-1}{})\cup\operatorname{FIRST}(\mp@subsup{\beta}{i}{}
            TRAILER \leftarrow\varnothing
```

Computing FIRST Sets

```
for each }x\inT,\operatorname{FIRST}(x)\leftarrow{x
for each A \inNT, FIRST(A)\leftarrow\varnothing
while (FIRST sets are still changing)
    for each p}\inP\mathrm{ , of the form }A->\beta
        if \beta}\mathrm{ is }\varepsilon\mathrm{ then
            FIRST(A)\leftarrowFIRST(A)\cup{\varepsilon}
        else if }\beta\mathrm{ is }\mp@subsup{B}{1}{}\mp@subsup{B}{2}{}\ldots\mp@subsup{B}{k}{}\mathrm{ then begin
            FIRST}(A)\leftarrow\operatorname{FIRST}(A)\cup(\operatorname{FIRST}(\mp@subsup{B}{1}{})-{\varepsilon}
            for i}\leftarrow1\mathrm{ to k-1 by 1 while }\varepsilon\in\operatorname{FIRST}(\mp@subsup{B}{i}{}
                FIRST(A)\leftarrowFIRST(A)\cup(FIRST(B}\mp@subsup{B}{i+1}{})-{\varepsilon}
            if i=k-1 and }\varepsilon\in\operatorname{FIRST(B
            then FIRST}(A)\leftarrow\operatorname{FIRST}(A)\cup{\varepsilon
                end
for each A \in NT
    if }\varepsilon\in\operatorname{FIRST(A) then
        FIRST(A)\leftarrowFIRST(A)\cupFOLLOW(A)
```


Building Top-down Parsers

Given an LL(1) grammar, and its FIRST \& Follow sets ...

- Emit a routine for each non-terminal
\rightarrow Nest of if-then-else statements to check alternate rhs's
\rightarrow Each returns true on success and throws an error on false
\rightarrow Simple, working (, perhaps ugly,) code
- This automatically constructs a recursive-descent parser

Improving matters

I don't know of a system that does this...

- Nest of if-then-else statements may be slow
\rightarrow Good case statement implementation would be better
- What about a table to encode the options?
\rightarrow Interpret the table with a skeleton, as we did in scanning

Building Top-down Parsers

Strategy

- Encode knowledge in a table
- Use a standard "skeleton" parser to interpret the table

Example

- The non-terminal Factor has three expansions
\rightarrow (Expr) or Identifier or Number
- Table might look like:

Building Top Down Parsers

Building the complete table

- Need a row for every NT \& a column for every T
- Need a table-driven interpreter for the table

LL(1) Skeleton Parser

token \leftarrow next_token()
push EOF onto Stack
push the start symbol, S, onto Stack
TOS \leftarrow top of Stack
loop forever
if TOS = EOF and token = EOF then
break \& report success
else if TOS is a terminal then
if TOS matches token then
pop Stack // recognized TOS
token \leftarrow next_token()
else report error looking for TOS
else
// TOS is a non-terminal
if TABLE[TOS,token] is $A \rightarrow B_{1} B_{2} \ldots B_{k}$ then
pop Stack // get rid of A
push $B_{k}, B_{k-1}, \ldots, B_{1} / /$ in that order
else report error expanding TOS
TOS \leftarrow top of Stack

Building Top Down Parsers

Building the complete table

- Need a row for every NT \& a column for every T
- Need an algorithm to build the table

Filling in $\operatorname{TABLE}[X, y], X \in N T, y \in T$

1. entry is the rule $X \rightarrow \beta$, if $y \in \operatorname{FIRST}(\beta)$
2. entry is the rule $X \rightarrow \varepsilon$ if $y \in \operatorname{FOLLOW}(X)$ and $X \rightarrow \varepsilon \in G$
3. entry is error if neither 1 nor 2 define it

If any entry is defined multiple times, G is not $L L(1)$

This is the $L L(1)$ table construction algorithm

Extra Slides Start Here

Recursive Descent in Object-Oriented Languages

- Shortcomings of Recursive Descent
\rightarrow Too procedural
\rightarrow No convenient way to build parse tree
- Solution
\rightarrow Associate a class with each non-terminal symbol
- Allocated object contains pointer to the parse tree

```
Class NonTerminal {
public:
protected:
    Scanner * s;
    TreeNode * tree;
}
```

 NonTerminal (Scanner \& scnr) \{ \(s=\& s c n r ; ~ t r e e ~=~ N U L L ; ~\} ~\)
 virtual ~NonTerminal() \{ \}
 virtual bool isPresent() = 0;
 TreeNode * abSynTree() \{ return tree; \}

Non-terminal Classes

```
Class Expr : public NonTerminal {
public:
    Expr(Scanner & scnr) : NonTerminal(scnr) { }
    virtual bool isPresent();
}
Class EPrime : public NonTerminal {
public:
    EPrime(Scanner & Scnr, TreeNode * p) :
            NonTerminal(scnr) { exprSofar = p; }
    virtual bool isPresent();
protected:
    TreeNode * exprSofar;
}
... // definitions for Term and TPrime
Class Factor : public NonTerminal {
public:
    Factor(Scanner & scnr) : NonTerminal(scnr) { };
    virtual bool isPresent();
}
```


Implementation of isPresent

```
bool Expr::isPresent() {
    Term * operand1 = new Term(*s);
    if (!operandl->isPresent()) return FALSE;
    Eprime * operand2 = new EPrime(*s, NULL);
    if (!operand2->isPresent()) // do nothing;
    return TRUE;
}
```


Implementation of isPresent

```
bool EPrime::isPresent() {
    token_type op = s->nextToken();
    if (op == PLUS || op == MINUS) {
        s->advance();
        Term * operand2 = new Term(*s);
        if (!operand2->isPresent()) throw SyntaxError(*s);
        Eprime * operand3 = new EPrime(*s, NULL);
        if (operand3->isPresent()); //do nothing
        return TRUE;
}
else return FALSE;
}
```


Abstract Syntax Tree Construction

```
bool Expr::isPresent() { // with semantic processing
    Term * operandl = new Term(*s);
    if (!operand1->isPresent()) return FALSE;
    tree = operand1->abSynTree();
    EPrime * operand2 = new EPrime(*s, tree);
    if (operand2->isPresent())
        tree = operand2->absSynTree();
    // here tree is either the tree for the Term
// Or the tree for Term followed by EPrime
return TRUE;
}
```


Abstract Syntax Tree Construction

```
bool EPrime::isPresent() { // with semantic processing
    token_type op = s->nextToken();
    if (op == PLUS || op == MINUS) {
            s->advance();
        Term * operand2 = new Term(*s);
        if (!operand2->isPresent()) throw SyntaxError(*s);
        TreeNode * t2 = operand2->absSynTree();
        tree = new TreeNode(op, exprSofar, t2);
        Eprime * operand3 = new Eprime(*s, tree);
        if (operand3->isPresent())
            tree = operand3->absSynTree();
        return TRUE;
    }
    else return FALSE;
}
```


Factor

```
bool Factor::isPresent() { // with semantic processing
    token_type op = s->nextToken();
    if (op == IDENTIFIER | op == NUMBER) {
        tree = new TreeNode(op, s->tokenValue());
        s->advance();
        return TRUE;
    }
    else if (op == LPAREN) {
        s->advance();
        Expr * operand = new Expr(*s);
        if (!operand->isPresent()) throw SyntaxError(*s);
        if (s->nextToken() != RPAREN) throw SyntaxError(*s);
        s->advance();
        tree = operand->absSynTree();
        return TRUE;
    }
    else return FALSE;
}
```

