
Parsing III 
(Top-down parsing: recursive descent & LL(1) )

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these 
materials for their personal use.   



Roadmap  (Where are we?)

We set out to study parsing
• Specifying syntax                                                       

→ Context-free grammars √
→ Ambiguity √

• Top-down parsers                                                     
→ Algorithm & its problem with left recursion  √
→ Left-recursion removal √

• Predictive top-down parsing
→ The LL(1) condition   today
→ Simple recursive descent parsers   today
→ Table-driven LL(1) parsers today



Picking the “Right” Production

If it picks the wrong production, a top-down parser may backtrack 

Alternative is to look ahead in input & use context to pick correctly

How much lookahead is needed?
• In general, an arbitrarily large amount
• Use the Cocke-Younger, Kasami algorithm or Earley’s algorithm

Fortunately,
• Large subclasses of CFGs can be parsed with limited lookahead
• Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(1)  and LR(1)  grammars



Predictive Parsing

Basic idea
Given A → α | β, the parser should be able to choose between α & β

FIRST sets
For some rhs α∈G, define FIRST(α) as the set of tokens that 

appear as the first symbol in some string that derives from α 
That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ 

We will defer the problem of how to compute FIRST sets until 
we look at the LR(1) table construction algorithm



Predictive Parsing

Basic idea
Given A → α | β, the parser should be able to choose between α & β

FIRST sets
For some rhs α∈G, define FIRST(α) as the set of tokens that 

appear as the first symbol in some string that derives from α 
That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ 

The LL(1)  Property  
If A → α and A → β both appear in the grammar, we would like 

FIRST(α) ∩ FIRST(β) = ∅
This would allow the parser to make a correct choice with a lookahead 

of exactly one symbol !
This is almost correct
See the next slide



Predictive Parsing

What about ε-productions?
⇒ They complicate the definition of LL(1)

If A → α and A → β and ε ∈ FIRST(α), then we need to ensure 
that FIRST(β) is disjoint from FOLLOW(α), too

Define FIRST+(α) as
• FIRST(α) ∪ FOLLOW(α),  if ε ∈ FIRST(α)
• FIRST(α), otherwise

Then, a grammar is LL(1) iff A → α and A → β implies 

FIRST+(α) ∩ FIRST+(β) = ∅ FOLLOW(α) is the set of 
all words in the grammar 
that can legally appear 
immediately after an α



Predictive Parsing

Given a grammar that has the LL(1) property
• Can write a simple routine to recognize each lhs 
• Code is both simple & fast
Consider A → β1 | β2 | β3, with 

FIRST+(β1) ∩ FIRST+ (β2) ∩ FIRST+ (β3) = ∅

/* find an A */
if (current_word ∈ FIRST(β1))
    find a β1 and return true
else if (current_word ∈ FIRST(β2))
    find a β2 and return true
else if (current_word ∈ FIRST(β3))
    find a β3 and return true
else 
    report an error and return false Of course, there is more detail to 

“find a βi”                   (§ 3.3.4 in EAC)

Grammars with the LL(1) 
property are called predictive 
grammars because the parser 
can “predict” the correct 
expansion at each point in the 
parse.

Parsers that capitalize on the 
LL(1) property are called 
predictive parsers.

One kind of predictive parser 
is the recursive descent 
parser.



Recursive Descent Parsing

Recall the expression grammar, after transformation

This produces a parser with six 
mutually recursive routines:
• Goal
• Expr
• EPrime
• Term
• TPrime
• Factor
Each recognizes one NT or T

The term descent refers to the 
direction in which the parse tree 
is built.

1 Goal → Expr
2 Expr →
3 →
4 |
5 | ε
6 Term →
7 →
8 |
9 | ε
10 Factor → number
11 | id

Term Expr′
Expr′ + Term Expr′

– Term Expr′

Factor Term′
Term′ * Factor Term′

/ Factor Term′



Recursive Descent Parsing            (Procedural)

A couple of routines from the expression parser

Goal( )
     token ← next_token( );
     if (Expr( ) = true & token = EOF) 
         then next compilation step;
         else 
              report syntax error;
              return false;

Expr( )
   if (Term( ) = false) 
      then return false;
      else return Eprime( );

Factor( )
   if (token = Number) then
       token ← next_token( );
       return true;
   else if (token = Identifier) then
        token ← next_token( );
        return true;
   else
       report syntax error;
       return false;

EPrime, Term, & TPrime follow 
the same basic lines (Figure 
3.7, EAC)

looking for EOF,
found token

looking for Number or Identifier, 
found token instead



Recursive Descent Parsing

To build a parse tree:
• Augment parsing routines to build 

nodes 
• Pass nodes between routines using 

a stack 
• Node for each symbol on rhs 
• Action is to pop rhs nodes, make 

them children of lhs node, and 
push this subtree

To build an abstract syntax tree 
• Build fewer nodes
• Put them together in a different 

order

Expr( )
     result ← true;
     if (Term( ) = false) 
        then return false;
        else if (EPrime( ) = false)
                   then result ← false;
                   else

    build an Expr node
    pop EPrime node

                        pop Term node
    make EPrime & 

Term 
         children of Expr
    push Expr node

     return result;

This is a preview of Chapter 4

Success ⇒ build a piece of the parse tree



Left Factoring

What if my grammar does not have the LL(1) property?
⇒ Sometimes, we can transform the grammar

The Algorithm

∀ A ∈ NT,
    find the longest prefix α that occurs in two 
            or more right-hand sides of A
     if α ≠ ε then replace all of the A productions,
            A → αβ1 | αβ2 | … | αβn | γ , 
     with 
            A → α Z  | γ 
            Z → β1 | β2 | … | βn 
      where Z is a new element of NT

Repeat until no common prefixes remain 



A graphical explanation for the same idea

becomes …

Left Factoring 

A → αβ1 
     | αβ2 
     | αβ3  

A → α Z
Z → β1 
     |  β2 
     |  βn 

A

αβ1

αβ3

αβ2

αZ

β1

β3

β2A



Left Factoring                              (An  example)

Consider the following fragment of the expression grammar

After left factoring, it becomes

This form has the same syntax, with the LL(1) property

FIRST(rhs1) = { Identifier }
FIRST(rhs2) = { Identifier }
FIRST(rhs3) = { Identifier }

FIRST(rhs1) = { Identifier }
FIRST(rhs2) = { [ }
FIRST(rhs3) = { ( }
FIRST(rhs4) = FOLLOW(Factor)

⇒ It has the LL(1) property

Factor → Identifier
|
|

Identifier [ ExprList  ]
Identifier ( ExprList  )

Factor →
Arguments →

|
| ε

IdentifierArguments
[ ExprList  ]
( ExprList  )



Graphically

       becomes …

Left Factoring 

Factor

Identifier

Identifier

Identifier

[ ]ExprList

( )ExprList

Factor Identifier [ ]ExprList

( )ExprList

ε

No basis for choice

Word determines 
correct choice



Question
By eliminating left recursion  and left factoring, can we transform 

an arbitrary CFG to a form where it meets the LL(1)  condition?  
(and can be parsed predictively with a single token lookahead?)

Answer
Given a CFG that doesn’t meet the LL(1) condition, it is undecidable 

whether or not an equivalent LL(1) grammar  exists.

Example
{an 0 bn | n ≥ 1}  ∪ {an 1 b2n | n ≥ 1}   has no LL(1) grammar

Left Factoring                                 (Generality)



Language that Cannot Be LL(1)

Example
            {an 0 bn | n ≥ 1}  ∪ {an 1 b2n | n ≥ 1}   has no LL(1) grammar

G → aAb  
     | aBbb

A → aAb 
     |  0

B → aBbb
     | 1 

Problem: need an unbounded number of a 
characters before you can determine 
whether you are in the A group or the B 
group.



Recursive Descent (Summary)

1. Build FIRST (and FOLLOW) sets
2. Massage grammar to have LL(1) condition

a. Remove left recursion
b. Left factor it

3. Define a procedure for each non-terminal
a. Implement a case for each right-hand side
b. Call procedures as needed for non-terminals

4. Add extra code, as needed
a. Perform context-sensitive checking
b. Build an IR to record the code

Can we automate this process?



FIRST and FOLLOW Sets

FIRST(α)
For some α ∈T ∪ NT, define FIRST(α) as the set of tokens 

that appear as the first symbol in some string that 
derives from α 

That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ 

FOLLOW(α)
For some α ∈ NT, define FOLLOW(α) as the set of symbols 

that can occur immediately after α in a valid sentence.
FOLLOW(S) = {EOF}, where S is the start symbol

To build FIRST sets, we need FOLLOW sets …



Computing FOLLOW Sets

FOLLOW(S) ← {EOF }
for each A ∈ NT, FOLLOW(A) ← Ø

while (FOLLOW sets are still changing)
    for each p ∈ P, of the form A→β1β2 … βk

   FOLLOW(βk) ← FOLLOW(βk) ∪ FOLLOW(A)
   TRAILER ← FOLLOW(A)
    for i ← k down to 2

   if ε ∈ FIRST(β i ) then
     FOLLOW(βi-1 ) ← FOLLOW(βi-1) ∪ { FIRST(βi ) –  { ε } }

 ∪ TRAILER
   else

 FOLLOW(βi-1 ) ← FOLLOW(βi-1) ∪ FIRST(βi ) 
      TRAILER ← Ø



Computing FIRST Sets

for each x  ∈ T, FIRST(x) ←  { x }
for each A ∈ NT, FIRST(A) ← Ø

while (FIRST sets are still changing)
    for each p ∈ P, of the form A→β,
        if β  is ε then
            FIRST(A) ← FIRST(A) ∪ { ε }
        else if β  is B1B2…Bk then begin
            FIRST(A) ← FIRST(A) ∪ ( FIRST(B1) –  { ε } )

       for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi ) 
     FIRST(A) ← FIRST(A) ∪ ( FIRST(Bi +1) –  { ε } )
  if  i = k–1 and ε ∈ FIRST(Bk )

then FIRST(A) ← FIRST(A) ∪ { ε }
   end

for each A ∈ NT
if ε ∈ FIRST(A) then

FIRST(A) ← FIRST(A) ∪ FOLLOW(A)



Building Top-down Parsers

Given an LL(1) grammar, and its FIRST & FOLLOW sets …
• Emit a routine for each non-terminal

→ Nest of if-then-else statements to check alternate rhs’s
→ Each returns true on success and throws an error on false
→ Simple, working (, perhaps ugly,) code

• This automatically constructs a recursive-descent parser

Improving matters
• Nest of if-then-else statements may be slow

→ Good case statement implementation would be better

• What about a table to encode the options?
→ Interpret the table with a skeleton, as we did in scanning

I don’t know of a system 
that does this …



Building Top-down Parsers

Strategy
• Encode knowledge in a table
• Use a standard “skeleton” parser to interpret the table

Example
• The non-terminal Factor has three expansions

→ ( Expr )  or  Identifier  or  Number

• Table might look like:

—1110————Factor

EOFNum.Id./*-+

Reduce by rule 10 on `+ ’Error on `+ ’

Terminal Symbols

Non-terminal
Symbols



Building Top Down Parsers

Building the complete table
• Need a row for every NT & a column for every T
• Need a table-driven interpreter for the table



LL(1) Skeleton Parser
token ← next_token()
push EOF onto Stack
push the start symbol, S, onto Stack
TOS ← top of Stack
loop forever
   if TOS = EOF and token = EOF then
       break & report success
    else if TOS is a terminal then
       if TOS matches token then
           pop Stack // recognized TOS
           token ← next_token()
       else report error looking for TOS
    else   // TOS is a non-terminal
       if TABLE[TOS,token] is A→ B1B2…Bk then
           pop Stack           // get rid of A
           push Bk, Bk-1, …, B1  // in that order
       else report error expanding TOS
   TOS ← top of Stack

exit on success



Building Top Down Parsers

Building the complete table
• Need a row for every NT & a column for every T
• Need an algorithm to build the table

Filling in TABLE[X,y], X ∈ NT, y ∈ T
1. entry is the rule X→ β, if y ∈ FIRST(β )

2. entry is the rule X → ε if y ∈ FOLLOW(X ) and X → ε ∈ G
3. entry is error if neither 1 nor 2 define it

If any entry is defined multiple times, G is not LL(1)

This is the LL(1) table construction algorithm



Extra Slides Start Here



Recursive Descent in Object-Oriented Languages

Class NonTerminal {
public:

NonTerminal(Scanner & scnr) { s = &scnr; tree = NULL; }
virtual ~NonTerminal() { }
virtual bool isPresent() = 0;
TreeNode * abSynTree() { return tree; }

protected:
Scanner * s;
TreeNode * tree;

}

• Shortcomings of Recursive Descent
→ Too procedural
→ No convenient way to build parse tree

• Solution
→ Associate a class with each non-terminal symbol

 Allocated object contains pointer to the parse tree



Non-terminal Classes

Class Expr : public NonTerminal {
public:

Expr(Scanner & scnr) : NonTerminal(scnr) { }
virtual bool isPresent();

}

Class EPrime : public NonTerminal {
public:

EPrime(Scanner & scnr, TreeNode * p) : 
NonTerminal(scnr) { exprSofar = p; }

virtual bool isPresent();
protected:

TreeNode * exprSofar;
}

…  // definitions for Term and TPrime

Class Factor : public NonTerminal {
public:

Factor(Scanner & scnr) : NonTerminal(scnr) { };
virtual bool isPresent();

}



Implementation of  isPresent 

bool Expr::isPresent() {

Term * operand1 = new Term(*s); 
if (!operand1->isPresent()) return FALSE;

Eprime * operand2 = new EPrime(*s, NULL);
if (!operand2->isPresent()) // do nothing; 

return TRUE;
}



Implementation of  isPresent 

bool EPrime::isPresent() {

token_type op = s->nextToken();
if (op == PLUS || op == MINUS) {

s->advance();

Term * operand2 = new Term(*s);
if (!operand2->isPresent()) throw SyntaxError(*s);

Eprime * operand3 = new EPrime(*s, NULL);
if (operand3->isPresent()); //do nothing

return TRUE; 
}
else return FALSE;

}



Abstract Syntax Tree Construction

bool Expr::isPresent() { // with semantic processing

Term * operand1 = new Term(*s); 
if (!operand1->isPresent()) return FALSE;
tree = operand1->abSynTree();

EPrime * operand2 = new EPrime(*s, tree);
if (operand2->isPresent()) 

tree  = operand2->absSynTree();

// here tree is either the tree for the Term
// or the tree for Term followed by EPrime
return TRUE;

}



Abstract Syntax Tree Construction

bool EPrime::isPresent() { // with semantic processing
token_type op = s->nextToken();
if (op == PLUS || op == MINUS) {

s->advance();

Term * operand2 = new Term(*s);
if (!operand2->isPresent()) throw SyntaxError(*s);

TreeNode * t2 = operand2->absSynTree();
tree = new TreeNode(op, exprSofar, t2); 

Eprime * operand3 = new Eprime(*s, tree);
if (operand3->isPresent())

tree = operand3->absSynTree(); 
return TRUE;

}
else return FALSE;

}



Factor

bool Factor::isPresent() { // with semantic processing
token_type op = s->nextToken();

if (op == IDENTIFIER | op == NUMBER) {
tree = new TreeNode(op, s->tokenValue());
s->advance();
return TRUE;

}
else if (op == LPAREN) {

s->advance();
Expr * operand = new Expr(*s);
if (!operand->isPresent()) throw SyntaxError(*s);
if (s->nextToken() != RPAREN) throw SyntaxError(*s);
s->advance();
tree = operand->absSynTree();
return TRUE;

}
else return FALSE;

}


