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Quick Review

Previous class:
→ The scanner is the first stage in the front end
→ Specifications can be expressed using regular expressions
→ Build tables and code from a DFA
→ Regular expressions, NFAs and DFAs
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source code parts of speech & words
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code



Goal

• We will show how to construct a finite state automaton to 
recognize any RE

• Overview:
→ Direct construction of a nondeterministic finite automaton 

(NFA) to recognize a given RE
 Requires ε-transitions to combine regular subexpressions

→ Construct a deterministic finite automaton (DFA) to simulate 
the NFA
 Use a set-of-states construction

→ Minimize the number of states
 Hopcroft state minimization algorithm

→ Generate the scanner code
 Additional specifications needed for details



RE →NFA using Thompson’s Construction

Key idea
• NFA pattern for each symbol & each operator

• Join them with ε moves in precedence order
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Example of Thompson’s Construction

Let’s try a ( b | c )* 

1.  a, b, & c

2.  b | c

3.  ( b | c )*  
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Example of Thompson’s Construction      (con’t)

4.  a ( b | c )* 

Of course, a human would design something simpler ...
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But, we can automate production of the 
more complex one ...
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NFA →DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions
• Move(si , a) is set of states reachable from si by a

•  ε-closure(si) is set of states reachable from si by ε

The algorithm:
• Start state derived from s0 of the NFA

• Take its ε-closure S0 = ε-closure(s0) 
• Take the image of S0, Move(S0, α) for each  α ∈ Σ, and take 

its ε-closure
• Iterate until no more states are added

Sounds more complex than it is…



NFA →DFA with Subset Construction

The algorithm:

s0 ← ε-closure(q0n )

while ( S is still changing )
  for each si ∈ S

    for each α ∈ Σ
        s?← ε-closure(Move(si,α))

       if ( s? ∉ S ) then
          add s? to S as sj 
          T[si,α] ← sj

Let’s think about why this works

The algorithm halts:

1.  S contains no duplicates
      (test before adding)

2.  2Qn is finite

3.  while loop adds to S, but does 
     not remove from S (monotone)

⇒ the loop halts

S contains all the reachable  
NFA states
It tries each character in each si.

It builds every possible NFA 
    configuration.

⇒ S and T form the DFA



NFA →DFA with Subset Construction

Example of a fixed-point computation
• Monotone construction of some finite set
• Halts when it stops adding to the set
• Proofs of halting & correctness are similar
• These computations arise in many contexts 

Other fixed-point computations
• Canonical construction of sets of LR(1) items

→ Quite similar to the subset construction 
• Classic data-flow analysis (& Gaussian Elimination)

→ Solving sets of simultaneous set equations

We will see many more fixed-point computations
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Final states

NFA →DFA with Subset Construction

Applying the subset construction:

a ( b | c )* :



The DFA for a ( b | c )*

• Ends up smaller than the NFA
• All transitions are deterministic 
• Use same code skeleton as before

NFA →DFA with Subset Construction
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Where are we?  Why are we doing this?

RE → NFA  (Thompson’s construction)  √ 
• Build an NFA for each term
• Combine them with ε-moves

NFA → DFA (subset construction) √
• Build the simulation

DFA → Minimal DFA
• Hopcroft’s algorithm                         

DFA → RE
• All pairs, all paths problem
• Union together paths from s0 to a final state

minimal 
DFARE NFA DFA

The Cycle of Constructions



DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state



DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:
• The set of paths leading to them are equivalent
• ∀ α ∈ Σ, transitions on α lead to equivalent states       (DFA)

• α-transitions to distinct sets ⇒ states must be in distinct sets



DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:
• The set of paths leading to them are equivalent
• ∀ α ∈ Σ, transitions on α lead to equivalent states       (DFA)

• α-transitions to distinct sets ⇒ states must be in distinct sets

A partition P of S
• Each s ∈ S is in exactly one set pi ∈ P

• The algorithm iteratively partitions the DFA’s states 



DFA Minimization

Details of the algorithm
• Group states into maximal size sets, optimistically
• Iteratively subdivide those sets, as needed 
• States that remain grouped together are equivalent

Initial partition, P0 , has two sets: {F} & {Q-F}      (D =(Q,Σ,δ,q0,F)) 

Splitting a set (“partitioning a set by a”)

• Assume qa, & qb ∈ s, and δ(qa,a) = qx, &  δ(qb,a) = qy 

• If qx & qy are not in the same set, then s must be split
→ qa has transition on a, qb does not ⇒ a splits s 

• One state in the final DFA cannot have two transitions on a



DFA Minimization

The algorithm

P ← { F, {Q-F}}
while ( P is still changing)
    T ← { }
    for each set S ∈ P
        for each α ∈ Σ
           partition S by α 
               into S1, and S2

           T ← T ∪ S1 ∪ S2

    if T ≠ P then
        P ← T

Why does this work?
• Partition P ∈ 2Q

• Start off with 2 subsets of Q 
{F} and {Q-F}

• While loop takes Pi→Pi+1 by 
splitting 1 or more sets

• Pi+1 is at least one step closer 
to the partition with |Q| sets

• Maximum of |Q | splits
Note that
• Partitions are never combined
• Initial partition ensures that 

final states are intactThis is a fixed-point algorithm!



Key Idea: Splitting S around α 

S

T

R

α

The algorithm partitions S around α 

Original set S

α

Q

α
S  has transitions 
on α to R, Q, & T



Key Idea: Splitting S around α 

T
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α

Original set S

α

Q

α

S1

S2

Could we split S2 further?

Yes, but it does not help 
asymptotically

S2 is everything 
in S - S1



DFA Minimization

Refining the algorithm
• As written, it examines every S ∈ P on each iteration

→ This does a lot of unnecessary work
→ Only need to examine S if some T, reachable from S, has split

• Reformulate the algorithm using a “worklist”
→ Start worklist with initial partition, F and {Q-F} 
→ When it splits S into S1 and S2, place S2 on worklist

This version looks at each S ∈ P many fewer times
⇒ Well-known, widely used algorithm due to John Hopcroft



Abbreviated Register Specification

Start with a regular expression
r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

minimal 
DFARE NFA DFA

The Cycle of Constructions



Abbreviated Register Specification

Thompson’s construction produces
r 0

r 1

r 2

r 8

r 9

… …

s0 sf

ε

ε

ε

ε

ε

ε

εε
ε

ε

ε

ε ε

εε

ε

ε

ε

ε
ε

…

minimal 
DFARE NFA DFA

The Cycle of Constructions

To make it fit, we’ve eliminated the 
ε-transition between “r” and “0”.



Abbreviated Register Specification

The subset construction builds

This is a DFA, but it has a lot of states …

r
0

sf0

s0

sf11
sf22

sf9

sf8

…
9

8

minimal 
DFARE NFA DFA

The Cycle of Constructions



Abbreviated Register Specification

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

rs0 sf

0,1,2,3,4,
5,6,7,8,9

minimal 
DFARE NFA DFA

The Cycle of Constructions



Limits of Regular Languages

Advantages of Regular Expressions
• Simple & powerful notation for specifying patterns

• Automatic construction of fast recognizers
• Many kinds of syntax can be specified with REs

Example — an expression grammar
Term →  [a-zA-Z] ([a-zA-z] | [0-9])*

Op      →  + | - | ∗ | /
Expr   →  ( Term Op )* Term

Of course, this would generate a DFA …

If REs are so useful …
Why not use them for everything?



Limits of Regular Languages

Not all languages are regular
RL’s ⊂ CFL’s  ⊂ CSL’s

You cannot construct DFA’s to recognize these languages
• L =  { pkqk }                                           (parenthesis languages)

• L =  { wcw r | w ∈ Σ*}
Neither of these is a regular language                      (nor an RE)

But, this is a little subtle.  You can construct DFA’s for
• Strings with alternating 0’s and 1’s               

( ε | 1 ) ( 01 )* ( ε | 0 ) 

• Strings with and even number of 0’s and 1’s                      

RE’s can count bounded sets and bounded differences



What can be so hard?

Poor language design can complicate scanning
• Reserved words are important

if then then then = else; else else = then                              (PL/I)

• Insignificant blanks                                    (Fortran & Algol68)
do 10 i = 1,25
do 10 i = 1.25

• String constants with special characters         (C, C++, Java, …)
newline, tab, quote, comment delimiters, …

• Finite closures                                           (Fortran 66 & Basic)
→ Limited identifier length
→ Adds states to count length



Building Scanners

The point
• All this technology lets us automate scanner construction
• Implementer writes down the regular expressions
• Scanner generator builds NFA, DFA, minimal DFA, and then 

writes out the (table-driven or direct-coded) code
• This reliably produces fast, robust scanners

For most modern language features, this works
• You should think twice before introducing a feature that 

defeats a DFA-based scanner
• The ones we’ve seen (e.g., insignificant blanks, non-reserved 

keywords) have not proven particularly useful or long lasting


