
Lexical Analysis — Part II:
Constructing a Scanner from Regular

Expressions

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these
materials for their personal use.

Quick Review

Previous class:
→ The scanner is the first stage in the front end
→ Specifications can be expressed using regular expressions
→ Build tables and code from a DFA
→ Regular expressions, NFAs and DFAs

Scanner

Scanner
Generator

specifications

source code parts of speech & words

tables or
code

Goal

• We will show how to construct a finite state automaton to
recognize any RE

• Overview:
→ Direct construction of a nondeterministic finite automaton

(NFA) to recognize a given RE
 Requires ε-transitions to combine regular subexpressions

→ Construct a deterministic finite automaton (DFA) to simulate
the NFA
 Use a set-of-states construction

→ Minimize the number of states
 Hopcroft state minimization algorithm

→ Generate the scanner code
 Additional specifications needed for details

RE →NFA using Thompson’s Construction

Key idea
• NFA pattern for each symbol & each operator

• Join them with ε moves in precedence order

S0 S1

a

NFA for a

S0 S1

a
S3 S4

b

NFA for ab

ε

NFA for a | b

S0

S1 S2

a

S3 S4

b

S5

ε

ε ε

ε
S0 S1

ε S3 S4
ε

NFA for a*

a

ε

ε

Ken Thompson, CACM, 1968

Example of Thompson’s Construction

Let’s try a (b | c)*

1. a, b, & c

2. b | c

3. (b | c)*

S0 S1

a
S0 S1

b
S0 S1

c

S2 S3

b

S4 S5

c

S1 S6 S0 S7

ε

ε

ε ε

ε ε

ε ε

S1 S2

b

S3 S4

c

S0 S5

ε

ε

ε

ε

Example of Thompson’s Construction (con’t)

4. a (b | c)*

Of course, a human would design something simpler ...

S0 S1

a

b | c

But, we can automate production of the
more complex one ...

S0 S1

a ε
S4 S5

b

S6 S7

c

S3 S8 S2 S9

ε

ε

ε ε

ε ε

ε ε

NFA →DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions
• Move(si , a) is set of states reachable from si by a

• ε-closure(si) is set of states reachable from si by ε

The algorithm:
• Start state derived from s0 of the NFA

• Take its ε-closure S0 = ε-closure(s0)
• Take the image of S0, Move(S0, α) for each α ∈ Σ, and take

its ε-closure
• Iterate until no more states are added

Sounds more complex than it is…

NFA →DFA with Subset Construction

The algorithm:

s0 ← ε-closure(q0n)

while (S is still changing)
 for each si ∈ S

 for each α ∈ Σ
 s?← ε-closure(Move(si,α))

 if (s? ∉ S) then
 add s? to S as sj
 T[si,α] ← sj

Let’s think about why this works

The algorithm halts:

1. S contains no duplicates
 (test before adding)

2. 2Qn is finite

3. while loop adds to S, but does
 not remove from S (monotone)

⇒ the loop halts

S contains all the reachable
NFA states
It tries each character in each si.

It builds every possible NFA
 configuration.

⇒ S and T form the DFA

NFA →DFA with Subset Construction

Example of a fixed-point computation
• Monotone construction of some finite set
• Halts when it stops adding to the set
• Proofs of halting & correctness are similar
• These computations arise in many contexts

Other fixed-point computations
• Canonical construction of sets of LR(1) items

→ Quite similar to the subset construction
• Classic data-flow analysis (& Gaussian Elimination)

→ Solving sets of simultaneous set equations

We will see many more fixed-point computations

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε-c losure (move(s,*))

NFA sta tes a b c

s0 q0 q1, q2, q3,
 q4, q6, q9

none none

s1 q1, q2, q3,
q4, q6, q9

none q5, q8, q9,
q3, q4, q6

q7, q8, q9,
q3, q4, q6

s2 q5, q8, q9,
q3, q4, q6

none s2 s3

s3 q7, q8, q9,
q3, q4, q6

none s2 s3

Final states

NFA →DFA with Subset Construction

Applying the subset construction:

a (b | c)* :

The DFA for a (b | c)*

• Ends up smaller than the NFA
• All transitions are deterministic
• Use same code skeleton as before

NFA →DFA with Subset Construction

δ a b c

s0 s1 - -

s1 - s2 s3

s2 - s2 s3

s3 - s2 s3

s3

s2

s0 s1

c

b
a

b

c

c

b

Where are we? Why are we doing this?

RE → NFA (Thompson’s construction) √
• Build an NFA for each term
• Combine them with ε-moves

NFA → DFA (subset construction) √
• Build the simulation

DFA → Minimal DFA
• Hopcroft’s algorithm

DFA → RE
• All pairs, all paths problem
• Union together paths from s0 to a final state

minimal
DFARE NFA DFA

The Cycle of Constructions

DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:
• The set of paths leading to them are equivalent
• ∀ α ∈ Σ, transitions on α lead to equivalent states (DFA)

• α-transitions to distinct sets ⇒ states must be in distinct sets

DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:
• The set of paths leading to them are equivalent
• ∀ α ∈ Σ, transitions on α lead to equivalent states (DFA)

• α-transitions to distinct sets ⇒ states must be in distinct sets

A partition P of S
• Each s ∈ S is in exactly one set pi ∈ P

• The algorithm iteratively partitions the DFA’s states

DFA Minimization

Details of the algorithm
• Group states into maximal size sets, optimistically
• Iteratively subdivide those sets, as needed
• States that remain grouped together are equivalent

Initial partition, P0 , has two sets: {F} & {Q-F} (D =(Q,Σ,δ,q0,F))

Splitting a set (“partitioning a set by a”)

• Assume qa, & qb ∈ s, and δ(qa,a) = qx, & δ(qb,a) = qy

• If qx & qy are not in the same set, then s must be split
→ qa has transition on a, qb does not ⇒ a splits s

• One state in the final DFA cannot have two transitions on a

DFA Minimization

The algorithm

P ← { F, {Q-F}}
while (P is still changing)
 T ← { }
 for each set S ∈ P
 for each α ∈ Σ
 partition S by α
 into S1, and S2

 T ← T ∪ S1 ∪ S2

 if T ≠ P then
 P ← T

Why does this work?
• Partition P ∈ 2Q

• Start off with 2 subsets of Q
{F} and {Q-F}

• While loop takes Pi→Pi+1 by
splitting 1 or more sets

• Pi+1 is at least one step closer
to the partition with |Q| sets

• Maximum of |Q | splits
Note that
• Partitions are never combined
• Initial partition ensures that

final states are intactThis is a fixed-point algorithm!

Key Idea: Splitting S around α

S

T

R

α

The algorithm partitions S around α

Original set S

α

Q

α
S has transitions
on α to R, Q, & T

Key Idea: Splitting S around α

T

R

α

Original set S

α

Q

α

S1

S2

Could we split S2 further?

Yes, but it does not help
asymptotically

S2 is everything
in S - S1

DFA Minimization

Refining the algorithm
• As written, it examines every S ∈ P on each iteration

→ This does a lot of unnecessary work
→ Only need to examine S if some T, reachable from S, has split

• Reformulate the algorithm using a “worklist”
→ Start worklist with initial partition, F and {Q-F}
→ When it splits S into S1 and S2, place S2 on worklist

This version looks at each S ∈ P many fewer times
⇒ Well-known, widely used algorithm due to John Hopcroft

Abbreviated Register Specification

Start with a regular expression
r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

minimal
DFARE NFA DFA

The Cycle of Constructions

Abbreviated Register Specification

Thompson’s construction produces
r 0

r 1

r 2

r 8

r 9

… …

s0 sf

ε

ε

ε

ε

ε

ε

εε
ε

ε

ε

ε ε

εε

ε

ε

ε

ε
ε

…

minimal
DFARE NFA DFA

The Cycle of Constructions

To make it fit, we’ve eliminated the
ε-transition between “r” and “0”.

Abbreviated Register Specification

The subset construction builds

This is a DFA, but it has a lot of states …

r
0

sf0

s0

sf11
sf22

sf9

sf8

…
9

8

minimal
DFARE NFA DFA

The Cycle of Constructions

Abbreviated Register Specification

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

rs0 sf

0,1,2,3,4,
5,6,7,8,9

minimal
DFARE NFA DFA

The Cycle of Constructions

Limits of Regular Languages

Advantages of Regular Expressions
• Simple & powerful notation for specifying patterns

• Automatic construction of fast recognizers
• Many kinds of syntax can be specified with REs

Example — an expression grammar
Term → [a-zA-Z] ([a-zA-z] | [0-9])*

Op → + | - | ∗ | /
Expr → (Term Op)* Term

Of course, this would generate a DFA …

If REs are so useful …
Why not use them for everything?

Limits of Regular Languages

Not all languages are regular
RL’s ⊂ CFL’s ⊂ CSL’s

You cannot construct DFA’s to recognize these languages
• L = { pkqk } (parenthesis languages)

• L = { wcw r | w ∈ Σ*}
Neither of these is a regular language (nor an RE)

But, this is a little subtle. You can construct DFA’s for
• Strings with alternating 0’s and 1’s

(ε | 1) (01)* (ε | 0)

• Strings with and even number of 0’s and 1’s

RE’s can count bounded sets and bounded differences

What can be so hard?

Poor language design can complicate scanning
• Reserved words are important

if then then then = else; else else = then (PL/I)

• Insignificant blanks (Fortran & Algol68)
do 10 i = 1,25
do 10 i = 1.25

• String constants with special characters (C, C++, Java, …)
newline, tab, quote, comment delimiters, …

• Finite closures (Fortran 66 & Basic)
→ Limited identifier length
→ Adds states to count length

Building Scanners

The point
• All this technology lets us automate scanner construction
• Implementer writes down the regular expressions
• Scanner generator builds NFA, DFA, minimal DFA, and then

writes out the (table-driven or direct-coded) code
• This reliably produces fast, robust scanners

For most modern language features, this works
• You should think twice before introducing a feature that

defeats a DFA-based scanner
• The ones we’ve seen (e.g., insignificant blanks, non-reserved

keywords) have not proven particularly useful or long lasting

