Lexical Analysis - Part II: Constructing a Scanner from Regular Expressions

Copyright 2003, Keith D. Cooper, Ken Kennedy \& Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Quick Review

Previous class:
\rightarrow The scanner is the first stage in the front end
\rightarrow Specifications can be expressed using regular expressions
\rightarrow Build tables and code from a DFA
\rightarrow Regular expressions, NFAs and DFAs

- We will show how to construct a finite state automaton to recognize any RE
- Overview:
\rightarrow Direct construction of a nondeterministic finite automaton (NFA) to recognize a given RE
- Requires ε-transitions to combine regular subexpressions
\rightarrow Construct a deterministic finite automaton (DFA) to simulate the NFA
- Use a set-of-states construction
\rightarrow Minimize the number of states
- Hopcroft state minimization algorithm
\rightarrow Generate the scanner code
- Additional specifications needed for details

RE \rightarrow NFA using Thompson's Construction

Key idea

- NFA pattern for each symbol \& each operator
- Join them with ε moves in precedence order

NFA for \underline{a}

NFA for $\underline{a} \mid \underline{b}$

NFA for ${ }^{*}$

Example of Thompson's Construction

Let's try $\underline{a}(\underline{b} \mid \underline{c})^{*}$

1. $\underline{a}, \underline{b}, \& \underline{c}$

2. $\underline{b} \mid \underline{c}$

3. $(\underline{b} \mid \underline{c})^{*}$

Example of Thompson's Construction

4. $\underline{a}(\underline{b} \mid \underline{c})^{*}$

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...

NFA \rightarrow DFA with Subset Construction

Need to build a simulation of the NFA
Two key functions

- Move $\left(s_{i}, \underline{a}\right.$ is set of states reachable from s_{i} by \underline{a}
- ε-closure(s_{i}) is set of states reachable from s_{i} by ε

The algorithm:

- Start state derived from s_{0} of the NFA
- Take its ε-closure $S_{0}=\varepsilon$-closure $\left(S_{0}\right)$
- Take the image of $S_{0}, \operatorname{Move}\left(S_{0}, \alpha\right)$ for each $\alpha \in \Sigma$, and take its ε-closure
- Iterate until no more states are added Sounds more complex than it is...

NFA \rightarrow DFA with Subset Construction

```
The algorithm:
so}\leftarrow\varepsilon\mathrm{ -closure (q}\mp@subsup{q}{\mathrm{ on }}{}
while (S is still changing )
    for each si}\mp@subsup{s}{i}{
        for each \alpha\in\Sigma
            s?\leftarrow\varepsilon-closure(Move(si,\alpha))
            if ( }s,\not\inS)\mathrm{ then
                add s, to S as sj
        T[s,\alpha]}\leftarrow\mp@subsup{s}{j}{
Let's think about why this works
```

The algorithm halts:

1. S contains no duplicates (test before adding)
2. 2^{Qn} is finite
3. while loop adds to S, but does not remove from S (monotone)
\Rightarrow the loop halts
S contains all the reachable NFA states
It tries each character in each s_{i}.
It builds every possible NFA configuration.
$\Rightarrow S$ and T form the DFA

NFA \rightarrow DFA with Subset Construction

Example of a fixed-point computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting \& correctness are similar
- These computations arise in many contexts

Other fixed-point computations

- Canonical construction of sets of LR(1) items
\rightarrow Quite similar to the subset construction
- Classic data-flow analysis (\& Gaussian Elimination)
\rightarrow Solving sets of simultaneous set equations
We will see many more fixed-point computations

NFA \rightarrow DFA with Subset Construction

$$
\underline{a}(\underline{b} \mid \underline{c})^{*}:
$$

Applying the subset construction:

| | | ε-closure (move(s,*)) | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | NFA states | \underline{a} | \underline{b} | \underline{c} |
| s_{0} | q_{0} | q_{1}, q_{2}, q_{3}, | none | |
| q_{4}, q_{6}, q_{9} | | | | |$)$

NFA \rightarrow DFA with Subset Construction

The DFA for $\underline{a}(\underline{b} \mid \underline{c})^{*}$

$\boldsymbol{\delta}$	a	b	c
s_{0}	s_{1}	-	-
s_{1}	-	s_{2}	s_{3}
s_{2}	-	s_{2}	s_{3}
s_{3}	-	s_{2}	s_{3}

- Ends up smaller than the NFA
- All transitions are deterministic
- Use same code skeleton as before

Where are we? Why are we doing this?

RE \rightarrow NFA (Thompson's construction) $\sqrt{ }$

- Build an NFA for each term
- Combine them with ε-moves

NFA \rightarrow DFA (subset construction) $\sqrt{ }$

- Build the simulation

The Cycle of Constructions

DFA \rightarrow Minimal DFA

- Hopcroft's algorithm

DFA \rightarrow RE

- All pairs, all paths problem
- Union together paths from s_{o} to a final state

DFA Minimization

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

DFA Minimization

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states
- α-transitions to distinct sets \Rightarrow states must be in distinct sets

DFA Minimization

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states
- α-transitions to distinct sets \Rightarrow states must be in distinct sets

A partition P of S

- Each $s \in S$ is in exactly one set $p_{i} \in P$
- The algorithm iteratively partitions the DFA's states

DFA Minimization

Details of the algorithm

- Group states into maximal size sets, optimistically
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent

Initial partition, P_{0}, has two sets: $\{F\} \&\{Q-F\} \quad\left(D=\left(Q, \Sigma, \delta, q_{0}, F\right)\right)$
Splitting a set ("partitioning a set by a")

- Assume $q_{a^{\prime}} \& q_{b} \in s$, and $\delta\left(q_{a}, \underline{a}\right)=q_{x^{\prime}} \& \delta\left(q_{b}, \underline{a}\right)=q_{y}$
- If $q_{x} \& q_{y}$ are not in the same set, then s must be split
$\rightarrow q_{a}$ has transition on a, q_{b} does not $\Rightarrow \underline{a}$ splits s
- One state in the final DFA cannot have two transitions on a

DFA Minimization

The algorithm

$$
\begin{aligned}
& P \leftarrow\{F,\{Q-F\}\} \\
& \text { while }(P \text { is still changing) } \\
& T \leftarrow\} \\
& \text { for each set } S \in P \\
& \quad \text { for each } \alpha \in \Sigma \\
& \quad \text { partition } S \text { by } \alpha \\
& \text { into } S_{1} \text {, and } S_{2} \\
& T \leftarrow T \cup S_{1} \cup S_{2} \\
& \text { if } T \neq P \text { then } \\
& P \leftarrow T
\end{aligned}
$$

Why does this work?

- Partition $P \in 2 Q$
- Start off with 2 subsets of Q $\{F\}$ and $\{Q-F\}$
- While loop takes $P_{i} \rightarrow P_{i+1}$ by splitting 1 or more sets
- P_{i+1} is at least one step closer to the partition with $|Q|$ sets
- Maximum of $|Q|$ splits

Note that

- Partitions are never combined
- Initial partition ensures that final states are intact

Key Idea: Splitting S around α

Original set S

The algorithm partitions S around α

Key Idea: Splitting S around α

Original set S

Could we split S_{2} further?
Yes, but it does not help asymptotically

DFA Minimization

Refining the algorithm

- As written, it examines every $S \in P$ on each iteration
\rightarrow This does a lot of unnecessary work
\rightarrow Only need to examine S if some T, reachable from S, has split
- Reformulate the algorithm using a "worklist"
\rightarrow Start worklist with initial partition, Fand \{Q-F\}
\rightarrow When it splits S into S_{1} and S_{2}, place S_{2} on worklis \dagger

This version looks at each $S \in P$ many fewer times
\Rightarrow Well-known, widely used algorithm due to John Hopcrof \dagger

Abbreviated Register Specification

Start with a regular expression
r0|r1|r2|r3|r4|r5|r6|r7|r8|r9

The Cycle of Constructions

Abbreviated Register Specification

Thompson's construction produces

Abbreviated Register Specification

The subse \dagger construction builds

This is a DFA, but it has a lot of states ...

The Cycle of Constructions

Abbreviated Register Specification

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!
The Cycle of Constructions

Limits of Regular Languages

Advantages of Regular Expressions

- Simple \& powerful notation for specifying patterns
- Automatic construction of fast recognizers
- Many kinds of syntax can be specified with REs

Example - an expression grammar
Term $\rightarrow[a-z A-Z]([a-z A-z] \mid[0-9])^{*}$
Op $\rightarrow \pm|=| \underline{\underline{1} \mid \underline{1}}$
Expr \rightarrow (Term Op $)^{*}$ Term
Of course, this would generate a DFA ...
If REs are so useful ...
Why not use them for everything?

Limits of Regular Languages

Not all languages are regular

$$
\text { RL's } \subset C F L \text { 's } \subset C S L \text { 's }
$$

You cannot construct DFA's to recognize these languages

- $L=\left\{p^{k} q^{k}\right\}$
(parenthesis languages)
- $L=\left\{w C w^{r} \mid w \in \Sigma^{*}\right\}$

Neither of these is a regular language
But, this is a little subtle. You can construct DFA's for

- Strings with alternating 0's and 1's

$$
(\varepsilon \mid 1)(01)^{*}(\varepsilon \mid 0)
$$

- Strings with and even number of 0's and 1's

RE's can count bounded sets and bounded differences

What can be so hard?

Poor language design can complicate scanning

- Reserved words are important
if then then then = else; else else = then
- Insignificant blanks
do $10 i=1,25$ do $10 i=1.25$
- String constants with special characters
(Fortran \& Algol68) newline, tab, quote, comment delimiters, ...
- Finite closures
\rightarrow Limited identifier length
\rightarrow Adds states to count length

Building Scanners

The point

- All this technology lets us automate scanner construction
- Implementer writes down the regular expressions
- Scanner generator builds NFA, DFA, minimal DFA, and then writes out the (table-driven or direct-coded) code
- This reliably produces fast, robust scanners

For most modern language features, this works

- You should think twice before introducing a feature that defeats a DFA-based scanner
- The ones we've seen (e.g., insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting

