

Lexical Analysis — Part II: Constructing a Scanner from Regular Expressions

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Previous class:

- \rightarrow The scanner is the first stage in the front end
- \rightarrow Specifications can be expressed using regular expressions
- $\rightarrow\,$ Build tables and code from a DFA
- \rightarrow Regular expressions, NFAs and DFAs

Goal

- We will show how to construct a finite state automaton to recognize any RE
- Overview:
 - → Direct construction of a nondeterministic finite automaton (NFA) to recognize a given RE
 - Requires ϵ -transitions to combine regular subexpressions
 - → Construct a deterministic finite automaton (DFA) to simulate the NFA
 - Use a set-of-states construction
 - \rightarrow Minimize the number of states
 - Hopcroft state minimization algorithm
 - \rightarrow Generate the scanner code
 - Additional specifications needed for details

 $\text{RE} \rightarrow \text{NFA}$ using Thompson's Construction

Key idea

- NFA pattern for each symbol & each operator
- Join them with ε moves in precedence order

NFA for \underline{a}^*

NFA for <u>a | b</u>

Ken Thompson, CACM, 1968

Example of Thompson's Construction

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...

Need to build a simulation of the NFA

Two key functions

- $Move(s_i, \underline{a})$ is set of states reachable from s_i by \underline{a}
- \mathcal{E} -closure(s_i) is set of states reachable from s_i by \mathcal{E}

The algorithm:

- Start state derived from s_0 of the NFA
- Take its ε -closure $S_0 = \varepsilon$ -closure(s_0)
- Take the image of S_0, Move(S_0, $\alpha)$ for each $\,\alpha\in\,\Sigma,$ and take its $\epsilon\text{-closure}$
- Iterate until no more states are added

Sounds more complex than it is...

The algorithm:

$$\begin{split} s_{o} &\leftarrow \varepsilon\text{-closure}(q_{on}) \\ \text{while (S is still changing)} \\ \text{for each } s_{i} \in S \\ \text{for each } \alpha \in \Sigma \\ s_{2} \leftarrow \varepsilon\text{-closure}(Move(s_{i}, \alpha)) \\ \text{if (} s_{2} \notin S \text{) then} \\ \text{add } s_{2} \text{ to } S \text{ as } s_{j} \\ T[s_{i}, \alpha] \leftarrow s_{j} \end{split}$$

Let's think about why this works

The algorithm halts:

- 1. S contains no duplicates (test before adding)
- 2. 2^{Qn} is finite
- *3.* while loop adds to *S*, but does not remove from *S* (monotone)

 \Rightarrow the loop halts

S contains all the reachable NFA states

It tries each character in each s_i.

It builds every possible NFA configuration.

 \Rightarrow S and T form the DFA

Example of a *fixed-point* computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting & correctness are similar
- These computations arise in many contexts

Other fixed-point computations

- Canonical construction of sets of LR(1) items
 - \rightarrow Quite similar to the subset construction
- Classic data-flow analysis (& Gaussian Elimination)
 - \rightarrow Solving sets of simultaneous set equations

We will see many more fixed-point computations

$\mathsf{NFA} \to \mathsf{DFA}$ with Subset Construction

Applying the subset construction:

		ɛ-closure(move(s,*))		
	NFA states	<u>a</u>	<u>b</u>	<u>C</u>
S ₀	\boldsymbol{q}_{o}	$q_1, q_2, q_3, q_4, q_6, q_9$	none	none
S ₁	$q_1, q_2, q_3,$	none	q 5, q 8, q 9,	q 7, q 8, q 9,
	q_4, q_6, q_9		q_{3}, q_{4}, q_{6}	q_{3}, q_{4}, q_{6}
S ₂	$q_5, q_8, q_9,$	none	S ₂	S ₃
	q_3, q_4, q_6			
S ₃	q_7, q_8, q_8	none	S ₂	S ₃
	q_{3}, q_{4}, q_{6}			
Final states				

The DFA for $\underline{a} (\underline{b} | \underline{c})^*$

- Ends up smaller than the NFA
- All transitions are deterministic
- Use same code skeleton as before

Where are we? Why are we doing this?

$\mathsf{RE} \to \mathsf{NFA}$ (Thompson's construction) \checkmark

- Build an NFA for each term
- Combine them with E-moves

NFA \rightarrow DFA (subset construction) $\sqrt{}$

- Build the simulation
- $\mathsf{DFA}\to\mathsf{Minimal}\;\mathsf{DFA}$
- Hopcroft's algorithm

$\mathsf{DFA}\to\mathsf{RE}$

- All pairs, all paths problem
- Union together paths from *s*₀ to a final state

The Big Picture

• Represent each such set with just one state

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states (DFA)
- α -transitions to distinct sets \Rightarrow states must be in distinct sets

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states (DFA)
- α -transitions to distinct sets \Rightarrow states must be in distinct sets
- A partition P of S
- Each $s \in S$ is in exactly one set $p_i \in P$
- The algorithm iteratively partitions the DFA's states

Details of the algorithm

- Group states into maximal size sets, *optimistically*
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent

Initial partition, P_0 , has two sets: $\{F\}$ & $\{Q-F\}$ ($D = (Q, \Sigma, \delta, q_0, F)$)

Splitting a set ("partitioning a set by \underline{a} ")

- Assume q_a , & $q_b \in s$, and $\delta(q_a, \underline{a}) = q_x$, & $\delta(q_b, \underline{a}) = q_y$
- If $q_x \& q_y$ are not in the same set, then s must be split $\rightarrow q_a$ has transition on a, q_b does not $\Rightarrow \underline{a}$ splits s
- One state in the final DFA cannot have two transitions on <u>a</u>

DFA Minimization

The algorithm

 $P \leftarrow \{ F, \{Q-F\} \}$ while (P is still changing) $T \leftarrow \{ \}$ for each set $S \in P$ for each $\alpha \in \Sigma$ partition S by α into S_1 , and S_2 $T \leftarrow T \cup S_1 \cup S_2$ if $T \neq P$ then $P \leftarrow T$

This is a fixed-point algorithm!

Why does this work?

- Partition $P \in 2^Q$
- Start off with 2 subsets of Q
 {F} and {Q-F}
- While loop takes $P_i \rightarrow P_{i+1}$ by splitting 1 or more sets
- *P_{i+1}* is at least one step closer
 to the partition with |*Q*| sets
- Maximum of |Q| splits

Note that

- Partitions are <u>never</u> combined
- Initial partition ensures that final states are intact

The algorithm partitions S around α

Key Idea: Splitting S around α

Original set S

Could we split S₂ further?

Yes, but it does not help asymptotically Refining the algorithm

- $\rightarrow\,$ This does a lot of unnecessary work
- \rightarrow Only need to examine S if some T, reachable from S, has split
- Reformulate the algorithm using a "worklist"
 - \rightarrow Start worklist with initial partition, F and {Q-F}
 - \rightarrow When it splits S into S_1 and S_2 , place S_2 on worklist

This version looks at each $S \in P$ many fewer times \Rightarrow Well-known, widely used algorithm due to John Hopcroft

Abbreviated Register Specification

Start with a regular expression r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

The Cycle of Constructions

♦ RE → NFA → DFA → DFA

Abbreviated Register Specification Thompson's construction produces ε 3 ε 3 3 3 5 8 9 The Cycle of Constructions To make it fit, we've eliminated the ϵ -transition between "r" and "O". minimal →RE--•NFA) -→DFA DFA

Abbreviated Register Specification

The subset construction builds

This is a DFA, but it has a lot of states ...

The Cycle of Constructions

THE PART

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

The Cycle of Constructions

Advantages of Regular Expressions

- Simple & powerful notation for specifying patterns
- Automatic construction of fast recognizers
- Many kinds of syntax can be specified with REs

Example — an expression grammar

 $\textit{Term} \rightarrow \texttt{[a-zA-Z]}(\texttt{[a-zA-z]} | \texttt{[0-9]})^{*}$

 $Op \quad \rightarrow \pm \mid \underline{-} \mid \underline{*} \mid \underline{/}$

Expr \rightarrow (Term Op)* Term

Of course, this would generate a DFA ...

If REs are so useful ...

Why not use them for everything?

Limits of Regular Languages

Not all languages are regular $\mathsf{RL's} \subset \mathsf{CFL's} \ \subset \mathsf{CSL's}$

You cannot construct DFA's to recognize these languages

- L = { p^kq^k } (parenthesis languages)
- $L = \{ w c w^r \mid w \in \Sigma^* \}$

Neither of these is a regular language

ar language (nor an RE)

But, this is a little subtle. You <u>can</u> construct DFA's for

- Strings with alternating 0's and 1's $(\epsilon | 1)(01)^*(\epsilon | 0)$
- Strings with and even number of 0's and 1's

RE's can count bounded sets and bounded differences

- \rightarrow Limited identifier length
- \rightarrow Adds states to count length

The point

- All this technology lets us automate scanner construction
- Implementer writes down the regular expressions
- Scanner generator builds NFA, DFA, minimal DFA, and then writes out the (table-driven or direct-coded) code
- This reliably produces fast, robust scanners

For most modern language features, this works

- You should think twice before introducing a feature that defeats a DFA-based scanner
- The ones we've seen (e.g., insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting