
Lexical Analysis - An Introduction

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these
materials for their personal use.

The Front End

The purpose of the front end is to deal with the input language
• Perform a membership test: code ∈ source language?
• Is the program well-formed (semantically) ?
• Build an IR version of the code for the rest of the compiler

The front end is not monolithic

Source
code

Front
End

Errors

Machine
code

Back
End

IR

The Front End

Scanner
• Maps stream of characters into words

→ Basic unit of syntax
→ x = x + y ; becomes
 <id,x> <eq,=> <id,x> <pl,+> <id,y> <sc,; >

• Characters that form a word are its lexeme
• Its part of speech (or syntactic category) is called its token

type
• Scanner discards white space & (often) comments

Source
code Scanner

IR
Parser

Errors

tokens

Speed is an issue in
scanning
⇒ use a specialized
recognizer

The Front End

Parser
• Checks stream of classified words (parts of speech) for

grammatical correctness
• Determines if code is syntactically well-formed
• Guides checking at deeper levels than syntax
• Builds an IR representation of the code

We’ll come back to parsing in a couple of lectures

Source
code Scanner

IR
Parser

Errors

tokens

The Big Picture

• Language syntax is specified with parts of speech, not words
• Syntax checking matches parts of speech against a grammar

1. goal → expr

2. expr → expr op term

3. | term

4. term → number

5. | id

6. op → +

7. | –

S = goal

T = { number, id, +, - }

N = { goal, expr, term, op }

P = { 1, 2, 3, 4, 5, 6, 7}

The Big Picture

• Language syntax is specified with parts of speech, not words
• Syntax checking matches parts of speech against a grammar

1. goal → expr

2. expr → expr op term

3. | term

4. term → number

5. | id

6. op → +

7. | –

S = goal

T = { number, id, +, - }

N = { goal, expr, term, op }

P = { 1, 2, 3, 4, 5, 6, 7}

No words here! Parts of speech,
not words!

The Big Picture

Why study lexical analysis?
• We want to avoid writing scanners by hand
• We want to harness the theory from other classes

Goals:
→ To simplify specification & implementation of scanners
→ To understand the underlying techniques and technologies

Scanner

Scanner
Generator

specifications

source code parts of speech & words

tables or
code

Specifications written as
“regular expressions”

Represent
words as
indices into a
global table

Regular Expressions

Lexical patterns form a regular language
*** any finite language is regular ***

Regular expressions (REs) describe regular languages

Regular Expression (over alphabet Σ)

• ε is a RE denoting the set {ε}

• If a is in Σ, then a is a RE denoting {a}

• If x and y are REs denoting L(x) and L(y) then
→ x |y is an RE denoting L(x) ∪ L(y)
→ xy is an RE denoting L(x)L(y)
→ x* is an RE denoting L(x)*

Precedence is
closure, then
concatenation,
then alternation

Ever type
“rm *.o a.out” ?

 These definitions should be well known

Set Operations (review)

Examples of Regular Expressions

Identifiers:
Letter → (a|b|c| … |z|A|B|C| … |Z)
Digit → (0|1|2| … |9)

Identifier → Letter (Letter | Digit)*

Numbers:
Integer → (+|-|ε) (0| (1|2|3| … |9)(Digit *))

Decimal → Integer . Digit *

Real → (Integer | Decimal) E (+|-|ε) Digit *

Complex → (Real , Real)

Numbers can get much more complicated!

Regular Expressions (the point)

Regular expressions can be used to specify the words to be
translated to parts of speech by a lexical analyzer

Using results from automata theory and theory of algorithms,
we can automatically build recognizers from regular
expressions

Some of you may have seen this construction for string
pattern matching

⇒ We study REs and associated theory to automate scanner
construction !

Consider the problem of recognizing ILOC register names

Register → r (0|1|2| … | 9) (0|1|2| … | 9)*

• Allows registers of arbitrary number
• Requires at least one digit

RE corresponds to a recognizer (or DFA)

Transitions on other inputs go to an error state, se

Example

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

DFA operation
• Start in state S0 & take transitions on each input character

• DFA accepts a word x iff x leaves it in a final state (S2)

So,
• r17 takes it through s0, s1, s2 and accepts

• r takes it through s0, s1 and fails

• a takes it straight to se

Example (continued)

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

Example (continued)

To be useful, recognizer must turn into code

sesesese

ses2ses2

ses2ses1

seses1s0

All
others

0,1,2,3,4,
5,6,7,8,9rδ

Char ← next character
State ← s0

while (Char ≠ EOF)
 State ← δ(State,Char)
 Char ← next character

if (State is a final state)
 then report success
 else report failure

Skeleton recognizer Table encoding RE

Example (continued)

To be useful, recognizer must turn into code

se

error
se

error
se

error
se

se

error
s2

add
se

error
s2

se

error
s2

add
se

error
s1

se

error
se

error
s1

start
s0

All
others

0,1,2,3,4,
5,6,7,8,9rδChar ← next character

State ← s0

while (Char ≠ EOF)
 State ← δ(State,Char)
 perform specified action
 Char ← next character

if (State is a final state)
 then report success
 else report failure

Skeleton recognizer Table encoding RE

r Digit Digit* allows arbitrary numbers
• Accepts r00000
• Accepts r99999
• What if we want to limit it to r0 through r31 ?

Write a tighter regular expression
→ Register → r ((0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31))
→ Register → r0|r1|r2| … |r31|r00|r01|r02| … |r09

Produces a more complex DFA

• Has more states
• Same cost per transition
• Same basic implementation

What if we need a tighter specification?

Tighter register specification (continued)

The DFA for
Register → r ((0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31))

• Accepts a more constrained set of registers
• Same set of actions, more states

S0 S5 S1

r

S4

S3

S6

S2

0,1,2

3 0,1

4,5,6,7,8,9

(0|1|2| … 9)

Tighter register specification (continued)

seseseseses1s0

sesesesesesese

seseseseseses6

seseseses6ses5

seseseseseses4

seseseseseses3

ses3s3s3s3ses2

ses4s5s2s2ses1

All
others4-9320,1rδ

Table encoding RE for the tighter register specification

Runs in the
same
skeleton
recognizer

Goal

• We will show how to construct a finite state automaton to
recognize any RE

• Overview:
→ Direct construction of a nondeterministic finite automaton

(NFA) to recognize a given RE
 Requires ε-transitions to combine regular subexpressions

→ Construct a deterministic finite automaton (DFA) to simulate
the NFA
 Use a set-of-states construction

→ Minimize the number of states
 Hopcroft state minimization algorithm

→ Generate the scanner code
 Additional specifications needed for details

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
• May be hard to directly construct the right DFA

What about an RE such as (a | b)* abb ?

This is a little different

• S0 has a transition on ε

• S1 has two transitions on a

This is a non-deterministic finite automaton (NFA)

a | b

S0 S1 S4 S2 S3

ε a bb

Non-deterministic Finite Automata

• An NFA accepts a string x iff ∃ a path though the transition
graph from s0 to a final state such that the edge labels spell x

• Transitions on ε consume no input
• To “run” the NFA, start in s0 and guess the right transition at

each step
→ Always guess correctly
→ If some sequence of correct guesses accepts x then accept

Why study NFAs?
• They are the key to automating the RE→DFA construction
• We can paste together NFAs with ε-transitions

NFA NFA becomes an NFAε

Relationship between NFAs and DFAs

DFA is a special case of an NFA

• DFA has no ε transitions
• DFA’s transition function is single-valued
• Same rules will work

DFA can be simulated with an NFA
→ Obviously

NFA can be simulated with a DFA (less obvious)
• Simulate sets of possible states
• Possible exponential blowup in the state space
• Still, one state per character in the input stream

Automating Scanner Construction

To convert a specification into code:
1 Write down the RE for the input language
2 Build a big NFA
3 Build the DFA that simulates the NFA
4 Systematically shrink the DFA
5 Turn it into code

Scanner generators
• Lex and Flex work along these lines
• Algorithms are well-known and well-understood
• Key issue is interface to parser (define all parts of speech)
• You could build one in a weekend!

Automating Scanner Construction

RE→ NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with ε-moves

NFA → DFA (subset construction)
• Build the simulation

DFA → Minimal DFA

• Hopcroft’s algorithm

DFA →RE (Not part of the scanner construction)
• All pairs, all paths problem
• Take the union of all paths from s0 to an accepting state

minimal
DFARE NFA DFA

The Cycle of Constructions

