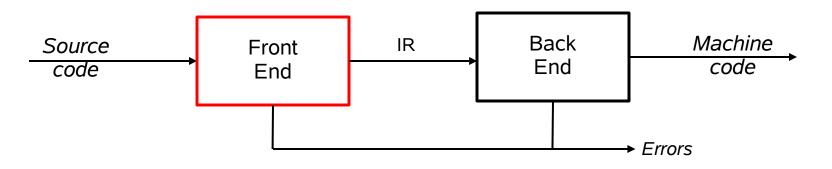


Lexical Analysis - An Introduction

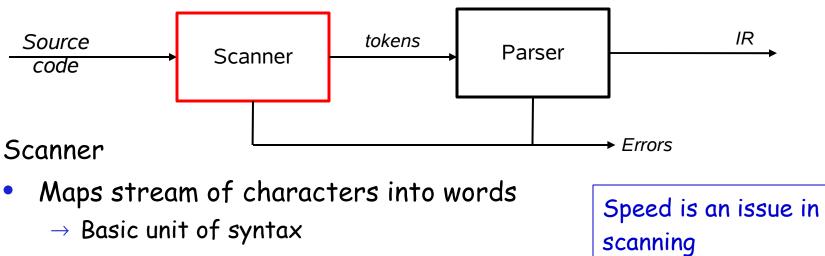
Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.



The purpose of the front end is to deal with the input language

- Perform a membership test: code ∈ source language?
- Is the program well-formed (semantically)?
- Build an IR version of the code for the rest of the compiler

The front end is not monolithic



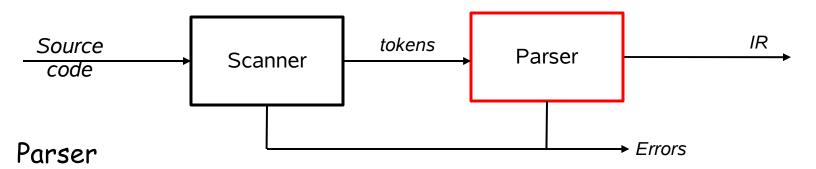
$$\rightarrow$$
 x = x + y ; becomes

<id,x> <eq,=> <id,x> <pl,+> <id,y> <sc,; >

 \Rightarrow use a specialized

recognizer

- Characters that form a word are its *lexeme*
- Its part of speech (or syntactic category) is called its token type
- Scanner discards white space & (often) comments •



- Checks stream of classified words (*parts of speech*) for grammatical correctness
- Determines if code is syntactically well-formed
- Guides checking at deeper levels than syntax
- Builds an IR representation of the code

We'll come back to parsing in a couple of lectures

The Big Picture

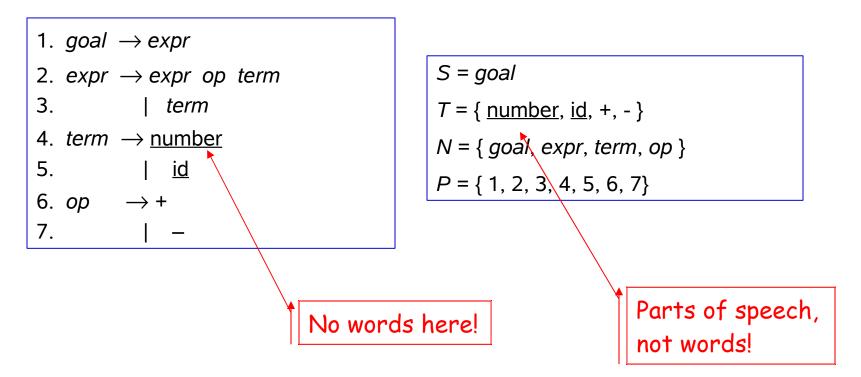
- Language syntax is specified with *parts of speech*, not *words*
- Syntax checking matches *parts of speech* against a grammar

1. goal $\rightarrow expr$					
2. expr \rightarrow expr op term					
3. <i>term</i>					
4. <i>term</i> \rightarrow <u>number</u>					
5. <u>id</u>					
6. op \rightarrow +					
7. –					

S = *goal T* = { <u>number</u>, <u>id</u>, +, - } *N* = { *goal*, *expr*, *term*, *op* } *P* = { 1, 2, 3, 4, 5, 6, 7}

The Big Picture

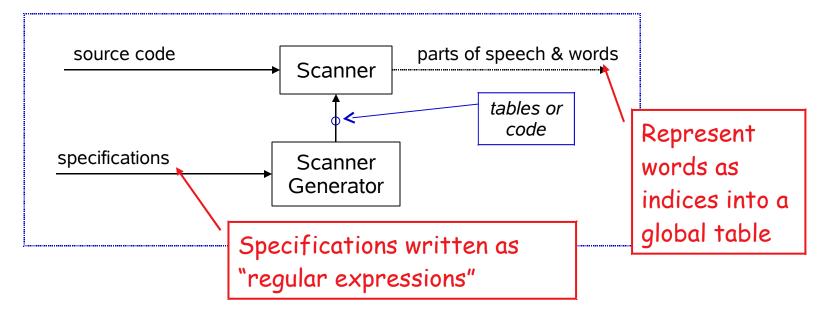
- Language syntax is specified with *parts of speech*, not *words*
- Syntax checking matches *parts of speech* against a grammar



The Big Picture

Why study lexical analysis?

- We want to avoid writing scanners by hand
- We want to harness the theory from other classes



Goals:

- $\rightarrow\,$ To simplify specification & implementation of scanners
- \rightarrow To understand the underlying techniques and technologies

Lexical patterns form a *regular language*

*** any finite language is regular ***

Regular expressions (REs) describe regular languages

Regular Expression (over alphabet Σ)

- ε is a RE denoting the set {ε}
- If \underline{a} is in Σ , then \underline{a} is a RE denoting $\{\underline{a}\}$
- If x and y are REs denoting L(x) and L(y) then

 $\rightarrow x | y \text{ is an RE denoting } L(x) \cup L(y)$

- $\rightarrow xy$ is an RE denoting L(x)L(y)
- $\rightarrow x^*$ is an RE denoting $L(x)^*$

<u>Precedence</u> is *closure*, then *concatenation*, then *alternation*

Ever type "rm *.o a.out" ?

(review)

Operation	Definition
Union of L and M Written L ∪ M	$L \cup M = \{s \mid s \in L \text{ or } s \in M\}$
Concatenation of L and M Written LM	<i>LM</i> = { <i>st</i> <i>s</i> ∈ <i>L</i> and <i>t</i> ∈ <i>M</i> }
Kleene closure of L Written L [*]	$L^* = \bigcup_{0 \le i \le \infty} L^i$
Positive Closure of L Written L⁺	$L^{+} = \bigcup_{1 \leq i \leq \infty} L^{i}$

and the state

Identifiers:

Numbers:

Integer \rightarrow (+|-| ϵ) (0| (1|2|3| ... |9)(Digit*))

 $\textit{Decimal} \rightarrow \textit{Integer} \underline{.} \textit{Digit}^*$

Real \rightarrow (Integer | Decimal) \underline{E} ($\underline{+}|\underline{-}|\varepsilon$) Digit*

 $Complex \rightarrow (Real, Real)$

Numbers can get much more complicated!

Regular expressions can be used to specify the words to be translated to parts of speech by a lexical analyzer

Using results from automata theory and theory of algorithms, we can automatically build recognizers from regular expressions

Some of you may have seen this construction for string pattern matching

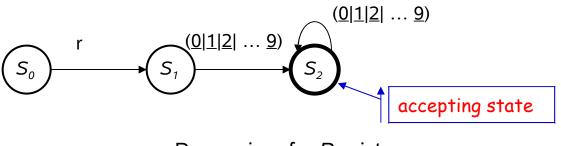
⇒ We study REs and associated theory to automate scanner construction !

Consider the problem of recognizing ILOC register names

 $\textit{Register} \rightarrow \texttt{r} (\underline{0}|\underline{1}|\underline{2}| \dots | \underline{9}) (\underline{0}|\underline{1}|\underline{2}| \dots | \underline{9})^*$

- Allows registers of arbitrary number
- Requires at least one digit

RE corresponds to a recognizer (or DFA)



Recognizer for Register

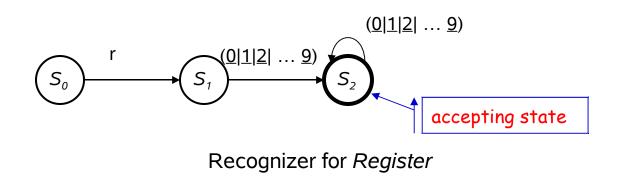
Transitions on other inputs go to an error state, s_e

Example

(continued)

DFA operation

- Start in state S_o & take transitions on each input character
- DFA accepts a word <u>x</u> iff <u>x</u> leaves it in a final state (S_2)



So,

- <u>r17</u> takes it through s_0 , s_1 , s_2 and accepts
- <u>r</u> takes it through s_0 , s_1 and fails
- <u>a</u> takes it straight to s_e

Example

To be useful, recognizer must turn into code

Char \leftarrow next character State $\leftarrow s_0$

- while (Char ≠ <u>EOF</u>) State ← δ(State,Char) Char ← *next character*
- if (State is a final state) then report success else report failure

0,1,2,3,4, A// 5,6,7,8,9 others δ r **S**0 S₁ \boldsymbol{S}_{e} \boldsymbol{S}_{e} \boldsymbol{S}_1 5 S_2 \boldsymbol{S}_{e} **S**₂ \boldsymbol{S}_{e} **S**₂ \boldsymbol{S}_{e} \boldsymbol{S}_{e} \boldsymbol{S}_{e} \boldsymbol{S}_{e} \boldsymbol{S}_{e}

Skeleton recognizer

Table encoding RE

Example

To be useful, recognizer must turn into code

 $\begin{array}{l} \textit{Char} \gets \textit{next character} \\ \textit{State} \gets \textit{s}_{\textit{o}} \end{array}$

while (Char \neq <u>EOF</u>) State $\leftarrow \delta$ (State,Char) *perform specified action* Char \leftarrow *next character*

if (State is a final state) then report success else report failure

Skeleton recognizer

δ	r	0,1,2,3,4, 5,6,7,8,9	All others
S ₀	s ₁	s _e	s _e
	start	error	error
S 1	S _e	s ₂	S _e
	error	add	error
S 2	s _e	s ₂	s _e
	error	add	error
S _e	s _e	s _e	s _e
	error	error	error

Table encoding RE

What if we need a tighter specification?

- <u>r</u> Digit Digit^{*} allows arbitrary numbers
- Accepts <u>r00000</u>
- Accepts <u>r99999</u>
- What if we want to limit it to <u>rO</u> through <u>r31</u>?

Write a tighter regular expression

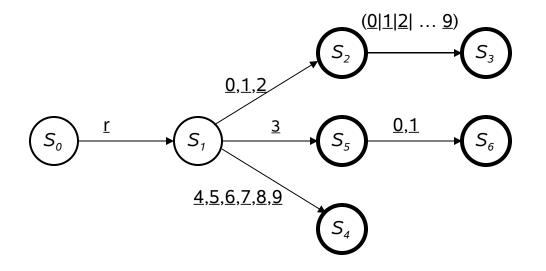
- $\rightarrow \textit{Register} \rightarrow \underline{r} ((0|1|2) (\textit{Digit} | \epsilon) | (4|5|6|7|8|9) | (3|30|31))$
- $\rightarrow \textit{Register} \rightarrow \underline{r0|r1|r2|} \dots |\underline{r31|r00|r01|r02|} \dots |\underline{r09}|$

Produces a more complex DFA

- Has more states
- Same cost per transition
- Same basic implementation

The DFA for

 $\textit{Register} \rightarrow \underline{r} ((0|1|2) (\textit{Digit} | \epsilon) | (4|5|6|7|8|9) | (3|30|31))$



- Accepts a more constrained set of registers
- Same set of actions, more states

(continued)

				I			
δ	r	0,1	2	3	4-9	All others	
S 0	S 1	S _e	$\boldsymbol{\mathcal{S}}_{e}$	S _e	S _e	S _e	
S ₁	S _e	S 2	S 2	S_5	S_4	S _e	
S 2	S _e	S 3	S 3	S 3	S 3	S _e	
S 3	S _e	S _e	S _e	S _e	S _e	S _e	← 1 Runs in the
S 4	S _e	S _e	$\boldsymbol{\mathcal{S}}_{e}$	S _e	S _e	S _e	same skeleton recognizer
S 5	S _e	S ₆	S _e	S _e	S _e	S _e	
S ₆	S _e	S _e	S _e	S _e	S _e	S _e	
S _e	S _e	S _e	S _e	S _e	S _e	S _e	

Table encoding RE for the tighter register specification

Goal

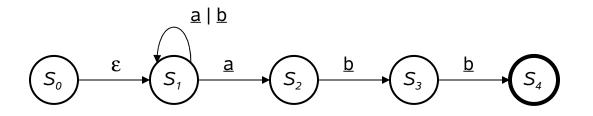
- We will show how to construct a finite state automaton to recognize any RE
- Overview:
 - → Direct construction of a nondeterministic finite automaton (NFA) to recognize a given RE
 - Requires ϵ -transitions to combine regular subexpressions
 - → Construct a deterministic finite automaton (DFA) to simulate the NFA
 - Use a set-of-states construction
 - \rightarrow Minimize the number of states
 - Hopcroft state minimization algorithm
 - \rightarrow Generate the scanner code
 - Additional specifications needed for details

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA

• May be hard to directly construct the right DFA

What about an RE such as $(\underline{a} | \underline{b})^* \underline{abb}$?



This is a little different

- S_o has a transition on ε
- S₁ has two transitions on <u>a</u>

This is a *non-deterministic finite automaton* (NFA)

- An NFA accepts a string x iff \exists a path though the transition graph from s_o to a final state such that the edge labels spell x
- Transitions on
 ɛ consume no input
- To "run" the NFA, start in s_o and guess the right transition at each step
 - \rightarrow Always guess correctly
 - \rightarrow If some sequence of correct guesses accepts x then accept
- Why study NFAs?
- They are the key to automating the RE \rightarrow DFA construction
- We can paste together NFAs with E-transitions NFA NFA becomes an NFA

Relationship between NFAs and DFAs

DFA is a special case of an NFA

- DFA has no ϵ transitions
- DFA's transition function is single-valued
- Same rules will work

DFA can be simulated with an NFA

→ Obviously

NFA can be simulated with a DFA

- Simulate sets of possible states
- Possible exponential blowup in the state space
- Still, one state per character in the input stream

(less obvious)

Automating Scanner Construction

To convert a specification into code:

- 1 Write down the RE for the input language
- 2 Build a big NFA
- 3 Build the DFA that simulates the NFA
- 4 Systematically shrink the DFA
- 5 Turn it into code

Scanner generators

- Lex and Flex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser (define all parts of speech)
 - Id and in a weak and
- You could build one in a weekend!

 $RE \rightarrow NFA$ (Thompson's construction)

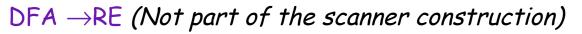
- Build an NFA for each term
- Combine them with ε-moves

$NFA \rightarrow DFA$ (subset construction)

Build the simulation

$\mathsf{DFA} ightarrow \mathsf{Minimal} \ \mathsf{DFA}$

Hopcroft's algorithm



• All pairs, all paths problem

