## Introduction to Code Generation

Copyright 2003, Keith D. Cooper, Ken Kennedy \& Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

## Structure of a Compiler




A compiler is a lot of fast stuff followed by some hard problems
$\rightarrow$ The hard stuff is mostly in code generation and optimization
$\rightarrow$ For superscalars, its allocation \& scheduling that count

## Structure of a Compiler

For the rest of $C T$, we assume the following model


- Selection is fairly simple (problem of the 1980s)
- Allocation \& scheduling are complex
- Operation placement is not yet critical (unified register set) What about the IR ?
- Low-level, RIsc-like IR called Iloc
- Has "enough" registers
- Iloc was designed for this stuff

Branches, compares, \& labels Memory tags Hierarchy of loads \& stores Provision for multiple ops/cycle

## Definitions

## Instruction selection

- Mapping IR into assembly code
- Assumes a fixed storage mapping \& code shape
- Combining operations, using address modes

Instruction scheduling

These 3 problems are tightly coupled.

- Reordering operations to hide latencies
- Assumes a fixed program (set of operations)
- Changes demand for registers

Register allocation

- Deciding which values will reside in registers
- Changes the storage mapping, may add false sharing
- Concerns about placement of data \& memory operations


## The Big Picture

How hard are these problems?
Instruction selection

- Can make locally optimal choices, with automated tool
- Global optimality is (undoubtedly) NP-Complete

Instruction scheduling

- Single basic block $\Rightarrow$ heuristics work quickly
- General problem, with control flow $\Rightarrow$ NP-Complete

Register allocation

- Single basic block, no spilling, \& 1 register size $\Rightarrow$ linear time
- Whole procedure is NP-Complete


## The Big Picture

Conventional wisdom says that we lose little by solving these problems independently

Instruction selection

- Use some form of pattern matching
- Assume enough registers or target "important" values


## Optimal for

Instruction scheduling

- Within a block, list scheduling is "close" to optimal
- Across blocks, build framework to apply list scheduling

Register allocation

- Start from virtual registers \& map "enough" into $k$
- With targeting, focus on good priority heuristic


## Code Shape

Definition

- All those nebulous properties of the code that impact performance \& code "quality"
- Includes code, approach for different constructs, cost, storage requirements \& mapping, \& choice of operations
- Code shape is the end product of many decisions (big \& small)


## Impact

- Code shape influences algorithm choice \& results
- Code shape can encode important facts, or hide them

Rule of thumb: expose as much derived information as possible

- Example: explicit branch targets in ILOC simplify analysis
- Example: hierarchy of memory operations in ILOC
(in EaC)


## Code Shape

My favorite example


- What if $x$ is 2 and $z$ is 3 ?
- What if $y+z$ is evaluated earlier?

Addition is commutative \& associative for integers

The "best" shape for $x+y+z$ depends on contextual knowledge $\rightarrow$ There may be several conflicting options

## Code Shape

Another example -- the case statement

- Implement it as cascaded if-then-else statements
$\rightarrow$ Cost depends on where your case actually occurs
$\rightarrow O$ (number of cases)
- Implement it as a binary search
$\rightarrow$ Need a dense set of conditions to search
$\rightarrow$ Uniform $(\log n)$ cos $\dagger$
- Implement it as a jump table
$\rightarrow$ Lookup address in a table \& jump to it
$\rightarrow$ Uniform (constant) cost
Compiler must choose best implementation strategy
No amount of massaging or transforming will convert one into another


## Generating Code for Expressions

The key code quality issue is holding values in registers

- When can a value be safely allocated to a register?
$\rightarrow$ When only 1 name can reference its value
$\rightarrow$ Pointers, parameters, aggregates \& arrays all cause trouble
- When should a value be allocated to a register?
$\rightarrow$ When it is both safe \& profitable
Encoding this knowledge into the IR
- Use code shape to make it known to every later phase
- Assign a virtual register to anything that can go into one
- Load or store the others at each reference
- Iloc has textual "memory tags" on loads, stores, \& calls
- Iloc has a hierarchy of loads \& stores
(see the digression)
Relies on a strong register allocator


## Generating Code for Expressions

```
expr(node)
    int result, t1, t2;
    switch (type(node)) {
    case }\times,\div,+,-: 
        t1\leftarrow expr(left child(node));
        t2\leftarrowexpr(right child(node));
        result }\leftarrow\mathrm{ NextRegister();
        emit (op(node), t1, t2, result);
        break;
        case IDENTIFIER:
        t1\leftarrow base(node);
        t2\leftarrow offset(node);
        result }\leftarrowNextRegister()
        emit (loadAO, t1, t2, result);
        break;
        case NUMBER:
        result }\leftarrow\mathrm{ NextRegister();
        emit (loadl, val(node), none, result);
        break;
        }
        return result;
}
```


## Generating Code for Expressions

```
expr(node)
    int result, t1, t2;
    switch (type(node)) {
            case }\times,\div,+,- :
            t1\leftarrow expr(left child(node));
            t2\leftarrow expr(right child(node));
            result }\leftarrow\mathrm{ NextRegister();
            emit (op(node), t1, t2, result);
            break;
            case IDENTIFIER:
            t1\leftarrow base(node);
            t2\leftarrow offset(node);
            result }\leftarrowNextRegister()
            emit (loadAO, t1, t2, result);
            break;
            case NUMBER:
            result }\leftarrowNextRegister()
            emit (loadl, val(node), none, result);
            break;
            }
            return result;
}
```

Example:


Produces:

```
expr(x)
    loadI @x 
    loadA0 r0,r1 }->\mathrm{ r2
expr(y)
    loadI @y }\quad->\textrm{r}
    loadA0 r0,r3 }->\mathrm{ r4
NextRegister() : R5
emit(add,r2,r4,r5)
    add r2,r4 }\quad->\textrm{r}
```


## Generating Code for Expressions

```
expr(node)
    int result, t1, t2;
    switch (type(node)) {
            case }\times,\div,+,- :
            t1\leftarrow expr(left child(node));
            t2\leftarrow expr(right child(node));
            result }\leftarrowN\mathrm{ NextRegister();
            emit (op(node), t1, t2, result);
            break;
            case IDENTIFIER:
            t1\leftarrow base(node);
            t2\leftarrow offset(node);
            result }\leftarrowNextRegister()
            emit (loadAO, t1, t2, result);
            break;
            case NUMBER:
            result }\leftarrowNextRegister()
            emit (loadl, val(node), none, result);
            break;
            }
            return result;
}
```

| loadl | $@ x$ | $\rightarrow r 1$ |
| :--- | :--- | :--- |
| loadAO | $r 0, r 1$ | $\rightarrow r 2$ |
| loadl | 2 | $\rightarrow r 3$ |
| loadl | $@ y$ | $\rightarrow r 4$ |
| loadAO | $r 0, r 4$ | $\rightarrow r 5$ |
| mult | $r 3, r 5$ | $\rightarrow r 6$ |
| sub | $r 2, r 6$ | $\rightarrow r 7$ |

Example:


Generates:

## Extending the Simple Treewalk Algorithm

More complex cases for IDENTIFIER

- What about values in registers?
$\rightarrow$ Modify the IDENTIFIER case
$\rightarrow$ Already in a register $\Rightarrow$ return the register name
$\rightarrow$ Not in a register $\Rightarrow$ load it as before, but record the fact
$\rightarrow$ Choose names to avoid creating false dependences
- What about parameter values?
$\rightarrow$ Many linkages pass the first several values in registers
$\rightarrow$ Call-by-value $\Rightarrow$ just a local variable with "funny" offset
$\rightarrow$ Call-by-reference $\Rightarrow$ needs an extra indirection
- What about function calls in expressions?
$\rightarrow$ Generate the calling sequence \& load the return value
$\rightarrow$ Severely limits compiler's ability to reorder operations


## Extending the Simple Treewalk Algorithm

Adding other operators

- Evaluate the operands, then perform the operation
- Complex operations may turn into library calls
- Handle assignment as an operator

Mixed-type expressions

- Insert conversions as needed from conversion table
- Most languages have symmetric \& rational conversion tables

| Typical | + | Integer | Real | Double |
| :---: | :--- | :--- | :--- | :--- |
| Addition | Integer | Integer | Real | Double |
| Table | Real | Real | Real | Double |
|  | Double | Double | Double | Double |

## Extending the Simple Treewalk Algorithm

What about evaluation order?

- Can use commutativity \& associativity to improve code
- This problem is truly hard

What about order of evaluating operands?

- $1^{\text {st }}$ operand must be preserved while $2^{\text {nd }}$ is evaluated
- Takes an extra register for $2^{\text {nd }}$ operand
- Should evaluate more demanding operand expression first
(Ershov in the 1950's, Sethi in the 1970's)

Taken to its logical conclusion, this creates Sethi-Ullman scheme

## Generating Code in the Parser

Need to generate an initial IR form

- Chapter 4 talks about AsTs \& ILOC
- Might generate an AST, use it for some high-level, nearsource work (type checking, optimization), then traverse it and emit a lower-level IR similar to ILOC

The big picture

- Recursive algorithm really works bottom-up
$\rightarrow$ Actions on non-leaves occur after children are done
- Can encode same basic structure into ad-hoc SDT scheme
$\rightarrow$ Identifiers load themselves \& stack virtual register name
$\rightarrow$ Operators emit appropriate code \& stack resulting VR name
$\rightarrow$ Assignment requires evaluation to an /value or an rvalue
- Some modal behavior is unavoidable


## Ad-hoc SDT versus a Recursive Treewalk

```
expr(node) {
    int result, t1, t2;
    switch (type(node)) {
        case }\times,\div,+,- 
        t1\leftarrow expr(left child(node));
        t2\leftarrow expr(right child(node));
        result }\leftarrow\mathrm{ NextRegister();
        emit (op(node), t1, t2, result);
        break;
    case IDENTIFIER:
        t1\leftarrowbase(node);
        t2\leftarrow offset(node);
        result }\leftarrowNextRegister()
        emit (loadAO, t1, t2, result);
        break;
    case NUMBER:
        result }\leftarrowNextRegister();
        emit (loadl, val(node), none, result);
        break;
    }
    return result;
}
```

```
Goal: Expr {$$=$1;};
Expr: Expr PLUS Term
    { t = NextRegister();
        emit(add,$1,$3,t); $$ = t; }
    Expr MINUS Term {...}
Term { $$ = $1; };
Term: Term TIMES Factor
        { t = NextRegister();
        emit(mult,$1,$3,t); $$ = t; };
    Term DIVIDES Factor {...}
    Factor { $$ = $1; };
Factor: NUMBER
    { t = NextRegister();
    emit(loadl,val($1),none, t );
    $$ = t; }
ID
    { t1 = base($1);
    t2 = offset($1);
    t = NextRegister();
    emit(loadAO,t1,t2,t);
    $$ = t; }
```


## Handling Assignment

(just another operator)
Ihs $\leftarrow r h s$

## Strategy

- Evaluate rhs to a value
- Evaluate Ihs to a location
$\rightarrow$ Ivalue is a register $\Rightarrow$ move rhs
$\rightarrow$ Ivalue is an address $\Rightarrow$ store rhs
- If rvalue \& Ivalue have different types
$\rightarrow$ Evaluate rvalue to its "natural" type
$\rightarrow$ Convert that value to the type of */value

Unambiguous scalars go into registers
Ambiguous scalars or aggregates go into memory

## Handling Assignment

What if the compiler cannot determine the rhs's type?

- This is a property of the language \& the specific program
- If type-safety is desired, compiler must insert a run-time check
- Add a tag field to the data items to hold type information

Code for assignment becomes more complex

```
```

evaluate rhs

```
```

evaluate rhs
convert rhs to type(lhs) or
convert rhs to type(lhs) or
signal a run-time error
signal a run-time error
lhs }\leftarrow rh

```
```

lhs }\leftarrow rh

```
```

if type (lhs) $\neq$ rhs.tag
then $\quad$ This is much more

## Handling Assignment

Compile-time type-checking

- Goal is to eliminate both the check \& the tag
- Determine, at compile time, the type of each subexpression
- Use compile-time types to determine if a run-time check is needed

Optimization strategy

- If compiler knows the type, move the check to compile-time
- Unless tags are needed for garbage collection, eliminate them
- If check is needed, try to overlap it with other computation

Can design the language so all checks are static

## Handling Assignment

The problem with reference counting

- Must adjust the count on each pointer assignment
- Overhead is significant, relative to assignment

Code for assignment becomes

```
evaluate rhs
lhs }->\mathrm{ count }\leftarrow lhs ->count - 1
lhs}\leftarrow\mp@code{addr(rhs)
rhs }->\mathrm{ count }\leftarrow rhs ->count + 1
```

Plus a check for zero at the end

This adds 1 +, 1 -, 2 loads, \& 2 stores

With extra functional units \& large caches, this may become either cheap or free ...

## How does the compiler handle $A[i, j]$ ?

First, must agree on a storage scheme
Row-major order
Lay out as a sequence of consecutive rows
Rightmost subscript varies fastest

$$
A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]
$$

Column-major order
Lay out as a sequence of columns
Leftmost subscript varies fastes $\dagger$
$A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]$
Indirection vectors
Vector of pointers to pointers to ... to values
Takes much more space, trades indirection for arithmetic
Not amenable to analysis

## Laying Out Arrays

The Concept

A | 1,1 | 1,2 | 1,3 | 1,4 |
| :--- | :--- | :--- | :--- |
| 2,1 | 2,2 | 2,3 | 2,4 |

These have distinct \& different cache behavior

Row-major order

$$
\text { A } \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1,1 & 1,2 & 1,3 & 1,4 & 2,1 & 2,2 & 2,3 & 2,4 \\
\hline
\end{array}
$$

Column-major order

$$
\text { A } \begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1,1 & 2,1 & 1,2 & 2,2 & 1,3 & 2,3 & 1,4 & 2,4 \\
\hline
\end{array}
$$

Indirection vectors


Computing an Array Address
A [ i ]

- @A+(i-low )xsizeof(A[1])
- In general: base $(A)+(i-l o w) \times \operatorname{sizeof}(A[1])$


## Computing an Array Address

A[i]

- @A+(i-low )xsizeof(A[1])
- In general: base( $A$ ) $+(i-$ low $) \times$ sizeof $(A[1])$



## Computing an Array Address

A[i]

- @A+(i-low )xsizeof(A[1])
- In general: base(A) $+(i-\operatorname{low}) \times$ sizeof( $A[1])$

What about $A\left[i_{1}, i_{2}\right]$ ?
Row-major order, two dimensions

> This stuff looks expensive! Lots of implicit,,$+- x$ ops

$$
@ A+\left(\left(i_{1}-\operatorname{low}_{1}\right) \times\left(\text { high }_{2}-\operatorname{low}+1\right)+i_{2}-\operatorname{low} 2\right) \times \operatorname{sizeof}(A[1])
$$

Column-major order, two dimensions

$$
@ A+\left(\left(i_{2}-\operatorname{low}_{2}\right) \times\left(\text { high }_{1}-\operatorname{low}_{1}+1\right)+i_{1}-\operatorname{low}_{1}\right) \times \operatorname{sizeof}(A[1])
$$

Indirection vectors, two dimensions * $\left(A\left[i_{1}\right]\right)\left[i_{2}\right]$ - where $A\left[i_{1}\right]$ is, itself, a $1-d$ array reference

## Optimizing Address Calculation for $A[i, j]$

In row-major order

$$
\text { where } w=\operatorname{sizeof}(A[1,1])
$$

$$
@ A+\left(i-l o w_{1}\right)\left(\text { high }_{2}-l o w_{2}+1\right) \times w+\left(j-l o w_{2}\right) \times w
$$

Which can be factored into

$$
\begin{aligned}
& @ A+i \times\left(\text { high }_{2}-\operatorname{low}_{2}+1\right) \times w+j \times w \\
& \quad-\left(\operatorname{low}_{1} \times\left(\text { high }_{2}-\text { low }_{2}+1\right) \times w\right)+\left(\operatorname{low}_{2} \times w\right)
\end{aligned}
$$

If low ${ }_{\mathrm{i}}$, high ${ }_{\mathrm{i}}$, and $w$ are known, the last term is a constant
Define @ $A_{0}$ as

$$
@ A-\left(\operatorname{low}_{1} \times\left(h_{i g h}-\operatorname{low}_{2}+1\right) \times w+\operatorname{low}_{2} \times w\right.
$$

And len ${ }_{2}$ as $\left(\right.$ high $_{2}-$ low $_{2}+1$ )
Then, the address expression becomes

$$
@ A_{0}+\left(i \times \operatorname{le} n_{2}+j\right) \times w .
$$

## Array References

What about arrays as actual parameters?
Whole arrays, as call-by-reference parameters


- Need dimension information $\Rightarrow$ build a dope vector
- Store the values in the calling sequence
- Pass the address of the dope vector in the parameter slot
- Generate complete address polynomial at each reference

Some improvement is possible

- Save len $n_{i}$ and low rather than low $_{i}$ and high ${ }_{i}$
- Pre-compute the fixed terms in prologue sequence

What about call-by-value?

- Most $c$-b-v languages pass arrays by reference
- This is a language design issue


## Array References

What about A[12] as an actual parameter?
If corresponding parameter is a scalar, it's easy

- Pass the address or value, as needed
- Must know about both formal \& actual parameter
- Language definition must force this interpretation

What is corresponding parameter is an array?

- Must know about both formal \& actual parameter
- Meaning must be well-defined and understood
- Cross-procedural checking of conformability
$\Rightarrow$ Again, we're treading on language design issues


## Array References

What about variable-sized arrays?
Local arrays dimensioned by actual parameters

- Same set of problems as parameter arrays
- Requires dope vectors (or equivalent)
$\rightarrow$ dope vector at fixed offset in activation record
$\Rightarrow$ Different access costs for textually similar references
This presents a lot of opportunity for a good optimizer
- Common subexpressions in the address polynomial
- Contents of dope vector are fixed during each activation
- Should be able to recover much of the lost ground
$\Rightarrow$ Handle them like parameter arrays


## Example: Array Address Calculations in a Loop

$$
\begin{aligned}
& D O J=1, N \\
& \quad A[I, J]=A[I, J]+B[I, J] \\
& E N D D O
\end{aligned}
$$

- Naïve: Perform the address calculation twice

$$
\begin{aligned}
& D O J=1, N \\
& R 1=@ A_{0}+\left(J \times l e n_{1}+I\right) \times \text { floatsize } \\
& R 2=@ B_{0}+\left(J \times l e n_{1}+I\right) \times \text { floatsize } \\
& M E M(R 1)=M E M(R 1)+M E M(R 2)
\end{aligned}
$$

END DO

## Example: Array Address Calculations in a Loop

$$
\begin{aligned}
& D O J=1, N \\
& \quad A[I, J]=A[I, J]+B[I, J]
\end{aligned}
$$

END DO

- Sophisticated: Move common calculations out of loop

$$
\begin{aligned}
& \text { R1 }=I \times \text { floatsize } \\
& c=\text { len }_{1} \times \text { floatsize ! Compile-time constant } \\
& \text { R2 }=@_{0}+\text { R1 } \\
& \text { R3 }=@ B_{0}+\text { R1 } \\
& D O J=1, N \\
& a=J \times c \\
& R 4=R 2+a \\
& R 5=R 3+a \\
& M E M(R 4)=M E M(R 4)+M E M(R 5)
\end{aligned}
$$

END DO

## Example: Array Address Calculations in a Loop

```
DO J = 1,N
        A[I,J] = A[I,J] + B[I,J]
END DO
```

- Very sophisticated: Convert multiply to add (Operator Strength Reduction)

$$
\begin{aligned}
& \text { R1 }=I \times \text { floatsize } \\
& c=\text { len } 1 \times \text { floatsize ! Compile-time constant } \\
& R 2=@ A_{0}+R 1 ; R 3=@ B_{0}+\text { R1 } \\
& D O J=1, N \\
& R 2=R 2+c \\
& R 3=R 3+c \\
& M E M(R 2)=M E M(R 2)+M E M(R 3) \\
& \text { END DO }
\end{aligned}
$$

See, for example, Cooper, Simpson, \& Vick, "Operator Strength Reduction", ACM TOPLAS, Sept 2001

