
UG3 Compiling Techniques
Overview of the Course

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

Critical Facts

Welcome to UG3 Compiling Techniques

• Instructor: Dr. Björn Franke (bfranke@inf.ed.ac.uk)

• Office Hours: Monday 2 PM to 3 PM, JCMB 2414
• Text: Keith Cooper & Linda Torczon - Engineering a Compiler

→ Morgan-Kaufmann, ISBN 1-55860-698-X
→ Textbook can be reused in UG4 Compiler Optimisation course

• Web Site: http://www.inf.ed.ac.uk/teaching/courses/ct/
→ Coursework, slides (2 per page), practice exams, …
→ I will not have handouts in class; get them from the web

• Slides: Closely based on Keith Cooper´s slides
→ Selection of approx. 15 out of >35 lectures
→ Dropped optimisation, smaller amount of in-depth material

Topics in the design of programming language translators,
including parsing, run-time storage management, error recovery,
code generation, and optimization

Basis for Grading

• Exams
→ Final 75%

• Coursework
→ Lexer & Parser 12.5%
→ Dataflow Analysis 12.5%

Rough Syllabus

• Overview § 1

• Local Register Allocation § 13.2

• Scanning § 2

• Parsing § 3

• Context Sensitive Analysis § 4

• Inner Workings of Compiled Code § 6, 7

• Introduction to Optimization § 8

• Code Selection § 11

• Instruction Scheduling § 12

• Register Allocation § 13

• More Optimization (time permitting)

If it looks like the
course follows the text,
that’s because the text
was written from the
course.

What about the missing
chapters?

5 : We’ll fit it in

9, 10: see UG4 Compiler
 Optimisation

Class-taking technique for Compiling Techniques

• I will use projected material extensively
→ I will moderate my speed, you sometimes need to say “STOP”

• You should read the book
→ Not all material will be covered in class
→ Book complements the lectures

• You are responsible for material from class
→ The exam will cover both lecture and reading
→ I will probably hint at good test questions in class

• “Compiling Techniques” is not a programming course
→ Coursework is graded on functionality and documentation more

than style (results matter)

Compilers

• What is a compiler?

Compilers

• What is a compiler?
→ A program that translates an executable program in one

language into an executable program in another language
→ The compiler should improve the program, in some way

• What is an interpreter?

Compilers

• What is a compiler?
→ A program that translates an executable program in one

language into an executable program in another language
→ The compiler should improve the program, in some way

• What is an interpreter?
→ A program that reads an executable program and produces the

results of executing that program

Compilers

• What is a compiler?
→ A program that translates an executable program in one

language into an executable program in another language
→ The compiler should improve the program, in some way

• What is an interpreter?
→ A program that reads an executable program and produces the

results of executing that program

• C is typically compiled, Scheme is typically interpreted

• Java is compiled to bytecodes (code for the Java VM)
→ which are then interpreted
→ Or a hybrid strategy is used

 Just-in-time compilation

Taking a Broader View

• Compiler Technology = Off-Line Processing
→ Goals: improved performance and language usability

 Making it practical to use the full power of the language
→ Trade-off: preprocessing time versus execution time (or space)
→ Rule: performance of both compiler and application must be

acceptable to the end user

• Examples
→ Macro expansion

 PL/I macro facility — 10x improvement with compilation

Taking a Broader View

• Compiler Technology = Off-Line Processing
→ Goals: improved performance and language usability

 Making it practical to use the full power of the language
→ Trade-off: preprocessing time versus execution time (or space)
→ Rule: performance of both compiler and application must be

acceptable to the end user

• Examples
→ Macro expansion

 PL/I macro facility — 10x improvement with compilation
→ Database query optimization

Taking a Broader View

• Compiler Technology = Off-Line Processing
→ Goals: improved performance and language usability

 Making it practical to use the full power of the language
→ Trade-off: preprocessing time versus execution time (or space)
→ Rule: performance of both compiler and application must be

acceptable to the end user

• Examples
→ Macro expansion

 PL/I macro facility — 10x improvement with compilation
→ Database query optimization
→ Emulation acceleration

 TransMeta “code morphing”

Why Study Compilation?

• Compilers are important system software components
→ They are intimately interconnected with architecture, systems,

programming methodology, and language design

• Compilers include many applications of theory to practice
→ Scanning, parsing, static analysis, instruction selection

• Many practical applications have embedded languages
→ Commands, macros, formatting tags …

• Many applications have input formats that look like
languages,

→ Matlab, Mathematica

• Writing a compiler exposes practical algorithmic &
engineering issues

→ Approximating hard problems; efficiency & scalability

Intrinsic interest

 Compiler construction involves ideas from many different
parts of computer science

Artificial intelligence Greedy algorithms
Heuristic search techniques

Algorithms Graph algorithms, union-find
Dynamic programming

Theory DFAs & PDAs, pattern matching
Fixed-point algorithms

Systems Allocation & naming,
Synchronization, locality

Architecture Pipeline & hierarchy management
Instruction set use

Intrinsic merit

 Compiler construction poses challenging and interesting
problems:

→ Compilers must do a lot but also run fast

→ Compilers have primary responsibility for run-time performance

→ Compilers are responsible for making it acceptable to use the
full power of the programming language

→ Computer architects perpetually create new challenges for the
compiler by building more complex machines

→ Compilers must hide that complexity from the programmer

→ Success requires mastery of complex interactions

Making Languages Usable

It was our belief that if FORTRAN, during its first months,
were to translate any reasonable “scientific” source program
into an object program only half as fast as its hand-coded
counterpart, then acceptance of our system would be in
serious danger... I believe that had we failed to produce
efficient programs, the widespread use of languages like
FORTRAN would have been seriously delayed.

— John Backus

About the instructor

• My own research
→ Compiling for embedded processors

 Optimisation for embedded systems (space, power, speed)
– Source-level transformation
– Adaptive compilation

 Parallelisation for multi-core embedded systems
– Homogeneous targets, e.g. Multi-DSP
– Heterogeneous targets, e.g. Systems-on-Chip

→ Design Space Exploration
 Architecture & Compiler Synthesis

• Thus, my interests lie in
→ Quality of generated code
→ Interplay between application, compiler and architecture

Next class

• The view from 35,000 feet
→ How a compiler works
→ What I think is important
→ What is hard and what is easy

